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Abstract

Background: The Plasmodium falciparum M18 Aspartyl Aminopeptidase (PfM18AAP) is only aspartyl aminopeptidase
which is found in the genome of P. falciparum and is essential for its survival. The PfM18AAP enzyme performs various
functions in the parasite and the erythrocytic host such as hemoglobin digestion, erythrocyte invasion, parasite growth
and parasite escape from the host cell. It is a valid target to develop antimalarial drugs. In the present work, we
employed 3D QSAR modeling, pharmacophore modeling, and molecular docking to identify novel potent inhibitors
that bind with M18AAP of P. falciparum.

Results: The PLSR QSAR model showed highest value for correlation coefficient r2 (88 %) and predictive correlation
coefficient (pred_r2) =0.6101 for external test set among all QSAR models. The pharmacophore modeling identified
DHRR (one hydrogen donor, one hydrophobic group, and two aromatic rings) as an essential feature of PfM18AAP
inhibitors. The combined approach of 3D QSAR, pharmacophore, and structure-based molecular docking yielded 10
novel PfM18AAP inhibitors from ChEMBL antimalarial library, 2 novel inhibitors from each derivative of quinine,
chloroquine, 8-aminoquinoline and 10 novel inhibitors from WHO antimalarial drugs. Additionally, high throughput
virtual screening identified top 10 compounds as antimalarial leads showing G-scores -12.50 to -10.45 (in kcal/mol),
compared with control compounds(G-scores -7.80 to -4.70) which are known antimalarial M18AAP inhibitors
(AID743024). This result indicates these novel compounds have the best binding affinity for PfM18AAP.

Conclusion: The 3D QSAR models of PfM18AAP inhibitors provided useful information about the structural
characteristics of inhibitors which are contributors of the inhibitory potency. Interestingly, In this studies, we extrapolate
that the derivatives of quinine, chloroquine, and 8-aminoquinoline, for which there is no specific target has been
identified till date, might show the antimalarial effect by interacting with PfM18AAP.
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Background
Malaria, a mosquito-borne disease, kills roughly 627000
people every year, mostly infants in Africa. It affects about
198 million patients annually (World Health Organization,
2013, http://www.who.int/malaria/media/en/). It is caused
by parasites which are clubbed under genus Plasmodium.
Among them, P. falciparum is encountered most com-
monly and is deadliest [1]. Though there are myriad drugs
to treat the menace but the increasing instances of resist-
ance against antimalarial drugs are becoming a deepening
concern day by day. In recent years, several cases of resist-
ance have been detected across the globe against artemisi-
nin drugs [2]. This underscores the need to discover
resilient drugs to combat malaria in future. Therefore, in
this effort, several molecular drug targets have been identi-
fied to develop new drug candidates. An important drug
target is M18 aspartyl aminopeptidase (M18AAP) which is
expressed in the cytoplasm of P. falciparum by a single
copy of PfM18AAP gene. M18AAP interacts with the hu-
man erythrocyte membrane protein Spectrin and other
proteins during disease kicking off erythrocytic life cycle,
and it is essential for the survival of this parasite in Blood
cells. It has been reported that the malaria parasites mu-
tated with M18AAP enzyme are not able to survive, which
proves that this plays a critical role in the survival of P.
falciparum and could serve as an important molecular tar-
get to develop potential therapeutic agents to control mal-
aria infection [3]. In modern times, virtual screening
methods like QSAR, pharmacophore modeling, molecular
docking have been proved a valuable tool for rapid discov-
ery of novel drug candidates, e.g., the discovery of O-
Acetyl-L-Serine Sulfhydrylase of Entamoeba histolytica in-
hibitors, acetylcholinesterase inhibitors, and antagonists
Acetophenazine, fluphenazine and periciazine against
Human androgen receptor [4–6]. In the drug development,
the study of Quantitative structure-activity relationships
(QSAR) plays an important role to analyze the properties
of drugs. QSAR is a mathematical model that relates chem-
ical descriptors of compounds to their quantity showing
specific biological or chemical activity [7]. The molecular
descriptors for the compounds are calculated and used to
derive QSAR Model [8]. In the present study, the known
bioactive dataset was used to build 3D QSAR models using
partial least square regression (PLSR) [9], principal compo-
nent regression (PCR) [10, 11] and k-nearest neighbor-
molecular field analysis (kNN-MFA) methods [12]. After
that, pharmacophore mapping was performed to identify
the binding modes and structural features of the ligands
and followed by molecular docking. The generated models
provided a valuable reference which could be applied in
the designing of pharmaceuticals with improved antimalar-
ial activity. In the end, virtual screening of antimalarial
compounds from ChEMBL Bioassay, and other dataset
were also carried out to identify novel potential inhibitors

which could be better as compared to the known inhibitors
of PfM18AAP.

Methods
Dataset of experimental PfM18AAP inhibitors
A dataset of 32 compounds known as inhibitors of
PfM18AAP was extracted from National Center for Bio-
technology Information PubChem bioassay (AID 743024)
(https://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=74
3024). Another high throughput screened dataset of 3502
known bioactive inhibitors of PfM18AAP was extracted
from AID 1822 used for docking studies against
PfM18AAP (http://pubchem.ncbi.nlm.nih.gov/assay/assay.
cgi?aid=1822). A library of 153,873 compounds was
obtained from the ChEMBL antimalarial database used
for finding novel inhibitors against PfM18AAP metallo-
proteinase [https://www.ebi.ac.uk/chembl/]. Additionally,
27 antimalarial drugs described by WHO, 32 analogous of
quinine compounds(QN) (AID 660170), 24 analogous of
chloroquine (CQ) (AID 404780), and 17 analogous of 8-
aminoquinoline(8-AmQN) (AID 554037) were also
extracted for molecular docking, 3D QSAR model and
pharmacophore similarity search. 2D structures were
converted to 3D structures using Corina 2.64v [13] and
open babel [14].

Molecular descriptors
The molecular descriptors were calculated by VLifeMDS
version 4.3 using Gasteiger-Marsili charge [15, 16]. The
PfM18AAP inhibitors compounds along with their activity
pIC50 values were given as input for force field calcula-
tion. The steric and electrostatic interaction energies are
computed using a methyl probe of charge +1.

Development of 3D QSAR models
The biological activity (pIC50) of inhibitors was selected
as dependent variables and descriptors as independent
variables. The 60 % data for the training set and 40 %
for test set were manually selected. The unicolumn sta-
tistics were calculated to validate training and test sets.
The 3D QSAR models were built using PLSR, PCR, and
kNN-MFA by stepwise forward-backward method [17].

3D QSAR Model validation
Internal validation
To perform internal validation (cross validation), a com-
pound is eliminated from the training set and then its bio-
logical activity is predicted to validate model accuracy. This
step is repeated until the biological activity of every com-
pound in the training set is predicted once. The cross-
validated coefficient, q2 is calculated using the given Eq. (1):
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q2 ¼ 1−

X
yi−ŷið Þ2

X
yi−ymeansð Þ2 ð1Þ

Where, yi and ŷi are the actual and predicted activities
of the ith molecule in the training set respectively, and
ymeans is the average activity of all the molecules in the
training set [18, 19].

External validation
External validation (pred_r2) is carried out by calcu-
lating predicted correlation coefficient (pred_r2) value
using following Eq. (2):

pred r2 ¼ 1−

X
yi−ŷið Þ2

X
yi−ymeansð Þ2 ð2Þ

Where, yi and ŷi are the actual and predicted activities of
the ith molecule in the test set, respectively, and ymeans is
the average activity of all the molecules in the training set.
A Z-score value is calculated by the following Eq. (3):

Zscore ¼ ðh−μÞ
σ

ð3Þ

Where, h is the q2 value calculated for the actual data-
set, μ is the average q2and σ is the standard deviation
calculated for various models built on different random
datasets [20].
F-test is Fisher value which indicates statistical signifi-

cance, a value greater than 30 is considered good, which
gives an idea of the chances of failure of the model. On
the other hand, q2_se is the standard deviation of cross
validated prediction and r2_se is standard deviation is a
measure of the absolute quality of a model.

Pharmacophore modeling
The pharmacophore model was built using the Phase
module of Schrodinger maestro [21]. The same set of in-
hibitors of PfM18AAP was subjected to LigPrep module
which produces high-quality, all-atom 3D structures

with correct chirality. Some pharmacophore hypotheses
were generated along with their respective set of aligned
conformations. These hypotheses were generated by a
systematic variation of many sites and a number of
matching active compounds. These selected features
were used to build a series of pharmacophore hypoth-
eses by selecting find the common pharmacophore op-
tion in phase. The common pharmacophore hypotheses
were analyzed using the survival score to yield the best
alignment of the active ligands using a maximum overall
root mean square deviation (RMSD) value of 2 Å for dis-
tance tolerance. Finally, several pharmacophore hypoth-
eses were generated along with their respective set of
aligned conformations. All pharmacophore hypotheses
were scored for active survival, inactive survival, site,
vector, volume, the number of matches, selectivity, en-
ergy, active, and inactive terms. Survival score secured
by each hypothesis is the measure of the quality of align-
ment for a particular hypothesis [22].

Docking and scoring
Molecular docking
To understand the nature of the interaction of inhibitors de-
scribed above [23] with PfM18AAP, molecular docking was
performed using GOLD v5.2 (Genetic Optimization for Lig-
and Docking) [24] and GLIDE module of Schrödinger using
[21] against the PfM18AAP. The crystal structure of
PfM18AAP (4EME) was obtained from protein data bank
(www.rcsb.org/pdb/explore/explore.do?structureId=4eme).

Table 1 Unicolumn statistics for training and test set

DataSet Column
Name

Average Maximum Minimum Standard
Deviation

Sum

Training pIC50 5.6527 6.7200 5.1020 0.4450 90.4430

Test pIC50 5.6559 6.3400 4.9200 0.4849 62.2146

Table 2 The statistical parameters for PLSR, PCR and 3D-QSAR models

Dependent variable ZScore r2 ZScore q2 BestRand r2 BestRand q2 Z-Score Pred r2 Best-Rand Pred r2

PLSR pIC50 5.96671 2.43240 0.46222 -0.23735 1.64037 0.44031

PCR pIC50 5.11408 2.20918 0.43798 0.09365 1.39477 0.21574

Fig. 1 Diagram showing pharmacophore alignments of known
PfM18AAP inhibitors (AID 743024)
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Since PfM18AAP requires cofactors for enzymatic ac-
tivity, Zn was retained during docking analysis [25].
In GOLD docking, the 10 best docked complexes
were ranked based on their GOLD fitness score. In
GLIDE docking, the top 10 compounds were selected
based on G-score. The binding affinity of docked
complex was calculated using X-Score v1.2.1 [26].
Protein-ligand interaction was analyzed by using
Pymol version 1.1r. www.pymol.org/ and LigPlot +
v1.4.5 [27].

Screening of PfM18AAP inhibitors
In this work, High Throughput Virtual Screening
(HTVS) used Glide module of the Schrodinger
software suite [21]. The ligand libraries were first pre-
pared by adding hydrogen and generating conforma-
tions through the LigPrep module. This LigPrep
module generated tautomer with the OPLS2005 force
field, the total no. of 411,766 output structures were
obtained. Then grid on the protein active site was
generated. Firstly, HTVS for every ligand library was
done and the top 1000 ranked compounds from every
library were subjected to Extra-Precision (XP) screen-
ing. In both the cases, the structures were flexibly
docked on the protein structure. The non-planar con-
formations were penalized. Structures were having

more than 200 atoms or more than 35 rotatable
bonds were not docked. Also, the Van Der Waal’s ra-
dius scaling factor was set to 0.8, and the partial
charge cutoff was set to 0.15. From these 1000 com-
pounds, the top 10 compounds from every library
were extracted as target-bound complexes. These
complexes were re-scored, and their binding affinity
was calculated using X-score software.

Results
3D QSAR modeling using PLSR Method
A dataset known as inhibitors of PfM18AAP (AID:
743024) was used for the unicolumn statistics ana-
lysis, which showed that the training and test sets
were suitable for 3D QSAR model development. The
test set is interpolative i.e. derived within the min-
max range of the training set. The unicolumn statis-
tics scores were shown in Table 1. The PLSR model
demonstrated that descriptors S_356, S_660, E_996,
and S_270 are important features to inhibit the activ-
ity of PfM18AAP, which represent steric and electro-
static field energy of interactions. The statistical
parameters calculated for developed 3D QSAR model
for PLSR shown in Table 2. The number suffixed with
descriptors represents its position on the 3D spatial
grid.

Table 3 The statistical values of top 5 the pharmacophore hypotheses

ID Survival Survival inactive Site Vector Volume Selectivity Matches Energy Activity Inactive

DHRR.31 11.068 9.052 0.79 0.949 0.527 1.466 14 0.001 6.34 2.016

DHRR.27 11.068 9.052 0.79 0.949 0.527 1.466 14 0.001 6.34 2.016

DHRR.6 10.941 8.863 0.78 0.943 0.548 1.471 14 0.551 6.22 2.079

DHRR.15 10.941 8.863 0.78 0.943 0.548 1.471 14 0.551 6.22 2.079

DHRR.26 10.892 8.81 0.79 0.944 0.535 1.47 14 0 6.15 2.082

Table 4 Top scoring compounds screened using the selected pharmacophore hypothesis

Compound ID G-Score (kcal/mol) Align Score Vector Score Volume Score Fitness Predicted activity (pIC50)

CHEMBL588000 -10.33 1.4702 0.0537 0.3833 0.2119 5.72

CHEMBL587141 -10.12 0.8484 0.8644 0.4971 1.6545 5.83

CHEMBL529157 -9.81 1.7562 0.3816 0.3651 0.2833 5.85

CHEMBL528484 -9.79 1.5091 0.6425 0.3672 0.7521 5.86

CHEMBL532976 -9.52 1.2208 0.7452 0.2344 0.9623 6.07

CHEMBL2414638 -9.41 0.4596 0.9888 0.3135 1.9194 5.97

CHEMBL601831 -9.37 1.0285 0.6596 0.29897 1.1014 5.85

CHEMBL390368 -9.24 1.0146 0.9530 0.3788 1.4863 5.89

CHEMBL591216 -8.72 0.5189 0.6304 0.3387 1.5367 5.84

CHEMBL465847 -8.08 0.6220 0.7935 0.3477 1.6228 5.87
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Equation 4 represents the PLSR 3D QSAR model:

pIC50 ¼ ‐0:0270 S 356ð Þ þ 0:0182 S 660ð Þ
‐ 0:0905 E 996ð Þ ‐ 0:0125 S 270ð Þ þ 6:1966

ð4Þ

3D QSAR modeling using PCR
The 3D QSAR Model was developed on the same
datasets of molecules by PCR method, and several
statistical parameters were calculated which are shown
in Table 2. The number suffixed with descriptors rep-
resents its position on the 3D spatial grid. This model
indicated that descriptors are significant for their bio-
logical activities.

Equation 5 represents PCR 3D QSAR model:

pIC50 ¼ ‐0:0321 S 356ð Þ þ 0:0147 S 660ð Þ ‐ 0:0886 E 996ð Þ

‐ 0:0092 S 270ð Þ þ 6:3423

ð5Þ

3D QSAR Modeling using (kNN-MFA)
The kNN-MFA model shown that the contributing de-
scriptors E_862 (1.0026 1.1562), S_629 (-0.4639 -0.1045)
and S_287 (-0.3372, -0.2663) which indicated that degree
of amino group shows potent activity. The range at the
lattice point E_862 (1.0026, 1.1562) which is positive that
means substitution with more electron density could
yield more active molecules.

Fig. 2 Docked Complex of PfM18AAP with known ligand 4-[(7-chloroquinolin-4-yl) amino]-2-(diethylaminomethyl) phenol

Table 5 Prediction of pIC50 Value of current antimalarial drugs described in the WHO

Compound ID Generic Name G-Score (kcal/mol) Align Score Vector Score Volume Score Fitness Predicted activity (pIC50)

CHEMBL76 Chloroquine -3.80 0.1086 0.9996 0.5197 2.4288 6.208

CHEMBL1535 Hydroxychloroquine -4.53 0.1995 0.9973 0.3341 2.1652 6.207

CHEMBL303933 Piperaquine -5.30 0.2720 0.9781 0.3049 2.0563 6.19

CHEMBL506 Primaquine -5.86 0.4463 0.8889 0.4954 2.0124 6.192

CHEMBL2104009 Amquinate -5.41 0.6142 0.9499 0.355 1.7931 6.205

CHEMBL416956 Mefloquine -5.28 0.5712 0.7183 0.3248 1.5672 6.20

CHEMBL682 Amodiaquine -4.48 0.6480 0.7838 0.2687 1.5126 6.385

CHEMBL36 Pyrimethamine -5.07 0.9521 0.9257 0.3390 1.4712 6.207

CHEMBL339049 Tebuquine -4.55 0.6093 0.7422 0.2286 1.4630 6.264

CHEMBL35228 Pyronaridine -5.68 0.6975 0.8185 0.2050 1.4422 6.198
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Pharmacophore-based screening of PfM18AAP inhibitors
From the Phase Software, ten hypotheses (pharmaco-
phore models) were generated having four features
DHRR (one hydrogen bond donor (D), hydrophobic
groups (H) and two aromatic rings (R)). These features
were common to all of the 15 compounds of the assay.
Common pharmacophore hypothesis is shown in Fig. 1.
The best model was chosen based on the survival score
and pharmacophore based QSAR. The final hypothesis,
DHRR.31 model, was selected based on the survival
score and pharmacophore based QSAR, which showed
the best alignment of the active set along with the site
score (0.79), vector score (0.949), and volume score
(0.527), top 5 model is shown in Table 3.

Molecular docking
The same data set used for QSAR and Pharmacophore
modeling was subjected to the molecular docking

analysis. The top 10 compounds showed GOLD fitness
score from 60.62 to 39.81 and predicted binding energy
from -6.43 to -7.38 kcal/mol (calculated using the X-
Score) and G-score from -7.80 to -4.70 kcal/mol
(Table 4). The Ligplot + analysis showed that Ser116 and
His87 amino acids interact by h-bond interaction, with
docked ligands. Since PfM18AAP requires a cofactor for
enzymatic activity, docking was performed along with
cofactor bound with specific amino acids. A docked
complex is depicted in Fig. 2. These results suggest that
the novel PfM18AAP inhibitors could be designed con-
sidering parameters of docking results leading to new
potent drugs against malaria.
Molecular docking analysis was done on another dataset

(AID1822:3502 molecules from PubChem Bioassay) known
inhibitors of PfM18AAP. The top 10 compounds showed
G-score from -7.72 to -6.52 kcal/mol. The G-score indicated
that these compounds (Table 5) might bind to pfM18AAP

Fig. 3 Ligplot diagram and docked Complex of PfM18AAP with ligand ChEMBL Database Compound [2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-4-
oxo-4H-chromen-3-yl hexopyranosiduronic acid]

Table 6 Top scoring of QN, CQ and 8 Amino-QN analogous screened using the selected pharmacophore hypothesis

IUPAC Name G-Score
(kcal/mol)

Align
Score

Vector
Score

Volume
Score

Fitness Predicted
activity (pIC50)

(9S)-Cinchonan-9-ol -4.18 0.8099 0.5259 0.4368 1.2878 5.521

(9S)-6′-Methoxycinchonan-9-ol -5.47 1.0187 0.7020 0.2737 1.1268 5.85

N-(7-Chloro-4-quinolinyl)-N’-ethyl-1,4-butanediamine -3.84 0.1101 0.9993 0.5 2.4075 5.98

1,4-Pentanediamine, N4-(7-chloro-4-quinolinyl)-N1,
N1-diethyl-Chloroquine

-3.52 0.1053 0.9983 0.4755 2.3861 5.86

PrimaquineN4-(6-Méthoxy-8-quinoléinyl)
-1,4-pentanediamine

-5.14 0.5014 0.9017 0.4005 1.8844 5.75

N4-{2,6-Diméthoxy-4-méthyl-5-[3-(trifluorométhyl)phénoxy]-8-quinoléinyl}
-1,4-pentanediamine

-5.32 0.5274 0.9118 0.2755 1.7478 5.67
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with good binding affinity. Further, predicted binding affinity
calculated using X-score for best compounds was found to
be in between from -9.54 to -6.51 kcal/mol (Table 5).

HTVS based screening of PfM18AAP inhibitors
ChEMBL antimalarial dataset (153873) was subjected to
molecular docking. The top 10 compounds (after dock-
ing), based on their G-score are shown in Table 6. The
glide score of these compounds varies from -12.50 to
-10.45 kcal/mol. The G-score indicated that these com-
pounds (Table 6) have a good binding affinity for
PfM18AAP enzyme. Figure 3 shows the docked complex
of ligand CHEMBL1506682 (2-(3,4-Dihydroxyphenyl)-
5,7-dihydroxy-4-oxo-4H-chromen-3-yl hexopyranosid-
uronic acid) in the active site of the receptor with best
G-score (-12.50 kcal/mol).To further validate in silico,
predicted binding affinity of the best pose obtained from
docking studies for each compound was calculated using

X-score program was found to be in between -8.28 and
-6.89 kcal/mol shown in Table 6.

Discussion
The best model was selected through the comparison
between fitness plots (Fig. 4) and radar plots for training
and test sets (Fig. 5 (a, b)). The linear graphical repre-
sentation of fitness plots shows the observed and pre-
dicted activities of the data set. The radar plots show the
training and the test sets separately by the red (actual
activity) and blue (predicted activity) lines. The radar
plot for training set represents a good r2 value because
the two lines show a good overlap while for the test set
a good overlap represents high pred_r2 value. The PLSR
contribution plot for the descriptor is given in Fig. 6
which represents the contribution of various descriptors
which are important for the inhibitory activity. In PLSR
and PCR models, the negative value in electrostatic field

Fig. 5 Radar plots showing the actual and predicted activities for a Training set b Test set molecules by using 3D QSAR PLSR model

Fig. 4 Scatter plots showing the correlation between actual versus predicted activities for training and test set molecules by using 3D QSAR
model- PLSR, PCR, and kNN-MFA
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descriptors indicates that negative electronic potential is
required to increase antimalarial activity, and more elec-
tronegative groups are preferred in that position.
Though positive value in kNN-MFA model shows that
group that imparting positive electrostatic potential is fa-
vorable for antimalarial activity, so less electronegative
group should prefer in that region. Similarly, negative

values in steric descriptors indicate that negative steric
potential is favorable for activity, and less lipophilic sub-
stitutions or bulky substituents group should be consid-
ered in that region, positive value of steric descriptors
reveals that positive steric potential is favorable to in-
crease antimalarial activity as in case of 4-[2-(quinolin-
4-ylamino)ethyl] benzene-1,2-diol, and more bulky
group is advised to prefer in that region. Comparison of
statistical parameters of PLSR, PCR, and kNN-MFA, is
shown in (Additional file 1) and the predicted pIC50
values in (Additional file 2).
In the present work, we performed screening of

CHEMBL antimalarial library to search antimalarial
compounds based on the pharmacophoric hypothesis
DHRR.31, which resulted in 29,671 compounds. These
compounds were subjected to glide docking against
PfM18AAP. The top 10 compounds were selected based
on the fitness and G-score; predicted activities are
shown in Table 7. Further we also carried out screening
of 27 WHO antimalarial drugs which resulted in 14 mol-
ecules shown in Table 8. Moreover, 17 compounds of 8-
aminoquinolines analogous, 24 compounds of CQ analo-
gous and 32 compounds of 8 amino-QN analogous were
subjected to screening resulting 17,19, and 22
PfM18AAP inhibitors respectively (Table 8). The result-
ant top 2 compounds from each analogous were selected
based on the fitness and G-score; predicted activities are
shown in Table 9. The study found that WHO current
antimalarial compound CHEMBL682 (Amodiaquine)

Fig. 6 Plot of the percentage contribution of each descriptor in
developed 3D QSAR PLSR model explaining variation in the activity

Table 7 Molecular Docking Results for known inhibitors (AID743024) against PfM18AAP

IUPAC Name Gold
Score

G-Score
(kcal/mol)

X-Score
(kcal/mol)

H
Bond

No. of Hydrophobic
Interaction

No. of NB
Interactions

pIC50
Value

4-[(7-chloroquinolin-4-yl)amino]-
2-(diethylamino methyl)phenol

36.57 -5.35 -8.09 Ser116 13 33 6.72

7-chloro-N-[2-(3,4-dimethoxyphenyl)
ethyl]quinolin-4-amine

35.17 -5.40 -7.48 - 11 60 6.18

N-[2-(3,4-dimethoxyphenyl)ethyl]-
6-ethoxyquinolin-4-amine

33.65 -6.43 -7.08 His342 9 72 5.85

N-[2-(3,4-dimethoxyphenyl)ethyl]
isoquinolin-4-amine

33.45 -4.97 -7.17 - 11 59 5.34

4-[2-[(7-chloroquinolin-4-yl)
amino]ethyl]benzene-1,2-diol

32.56 -7.80 -7.38 Ser414 12 70 6.2

3-[2-(quinolin-4-ylamino)ethyl]
benzene-1,2-diol

32.41 -5.67 -7.36 Glu284
Ser414

10 77 5.56

N-[2-(2-bromo-4,5-dimethoxyphenyl)
ethyl]quinolin-4-amine

32.31 -4.85 -7.35 - 11 61 6.34

1-benzyl-N-[2-(3,4-dimethoxyphenyl)
ethyl]piperidin-4-amine

32.11 -4.70 -7.10 Ser116 11 61 5.16

4-[2-(quinolin-4-ylamino)
ethyl]benzene-1,2-diol

31.89 -5.25 -7.19 Glu284
Ser414

10 62 5.4

4-[3-(acridin-9-ylamino)
propyl]benzene-1,2-diol

30.58 -5.65 -7.63 His87
Asp89

6 46 5.43

H Bond Hydrogen-Bond, NB Non Bonded
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has highest predicted value of pIC50 6.38 which is also
present in the known dataset of PfM18AAP with pIC50
value 6.72.
We analyzed the types of interactions of each top

ranked compound for known inhibitors (AID1822)
against PfM18AAP; 2D plots were generated using Lig-
plot + software and ligand-protein complex. The number
of hydrogen bonded interactions, lipophilic interactions
and the number of non-bonded interactions was
counted and tabulated in Table 5. It is observed that
overall all compounds from C1 to C10 have formed at
least 1 (C1 and C10), mostly 4 (C3, C4, C7, C8, and C9),
and at most 5 (C6) hydrogen bonds. The total number
of lipophilic interactions for each compound varies in
between 9 (for C9, C10) and 4 (for C3 and C7). Also, the
total number of non-bonded interactions for each com-
pound varies from 29 (for C5) to 76 (for C2). These ob-
servations suggest that the compounds C3, C4, C6, C7,
C8, and C9 have better specificity as they have more
hydrogen bonds and compounds C1, C2, C9, and C10
have good binding affinity due to a high number of
hydrophobic contacts. The Compound C1 showed inter-
action with Glide score -7.72 kcal/mol. The docking
poses analysis of C1shows one hydrogen bond (Gly509)
interaction with amino acid residues of the protein. The
next favorable interaction is shown by C2 with G-score
of -7.71 kcal/mol and four hydrogen bond interactions
with the active site residues Ser116, Asp325, Met436
and Lys463, 76 nonbonded interactions and inhibition
(75.26 %) and eight hydrophobic interactions. The Com-
pound C6 showed highest five hydrogen bond inter-
action (His438, Asp325, Glu380, His87, and His535).
Asp325 is found to be the most conserved residues,
which is present in 6 out of 10 compounds and Ser116
is found to be the most conserved residues, which is
present in 5 out of 10 compounds. Hence, based on the
Docking analysis against antimalarial PfM18AAP inhibi-
tors, we conclude that these compounds have a better

affinity with PfM18AAP enzyme, thus are novel potential
candidate to develop drugs against malaria.
Further, we also analyzed the interactions of CHEMBL

antimalarial library’s top ranked inhibitors against
PfM18AAP (Table 6). The highest X score of - 11.6 kcal/
mol was obtained with the ligand (CHEMBL1506682)
having three hydrogen bond (Ser116, Glu381, and
Met436) interaction with amino acid residues of the
protein. The total number of lipophilic interaction for
each compound varies in between 9 (CHEMBL602830
and CHEMBL429) and 4 (for CHEMBL511171). This
observation suggests that CHEMBL1506682 have better
specificity and CHEMBL602830 have a good binding af-
finity. Ser510 and Glu380 are found to be the most con-
served residues, which is present in 5 out of 10
compounds. Hence, based on the comparison between
known bioactive antimalarial M18AAP inhibitors (as
control) and top ten novel ChEMBL compounds, we
conclude that these compounds could bind to
PfM18AAP with better affinity, thus are the potential
candidate to develop drugs against malaria.

Conclusions
The present study was aimed at generating the predictive
3D QSAR models capable of revealing the structural re-
quirements for antimalarial inhibitors of PfM18AAP. The
comparison of the different statistical parameters of the
three models suggests that PLSR model is best due to better
internal validation q2= 0.6128 and an external test of pred_r2=
0.6101. Model 3 (kNN-MFA) also had a good internal val-
idation showing q2=0.7641, but the external validation had a
bad pred_r2= 0.0366. Therefore both PLSR and PCR models
show potential predictive ability as determined by testing
the external test set. Thus, 3D QSAR modeling provided a
better understanding of the structural requirements of anti-
malarial compounds, which could help design potent
PfM18AAP inhibitors. Also, pharmacophore mapping was
applied to identify the binding modes and structural

Table 8 Molecular Docking Results for known inhibitors (AID1822) against PfM18AAP

S. No. Chemical
Substance ID

G-Score
(kcal/mol)

X-Score
(kcal/mol)

HBond No. of Hydro-phobic
Interactions

No. of NB
Interactions

% Inhibition

C1 49644635 -7.72 -8.42 Gly509 8 68 32.65

C2 24707924 -7.71 -9.54 Ser116, Asp325, Met436, Lys463 8 76 75.26

C3 26665815 -7.48 -6.51 Ser116, Cys508 4 32 31.93

C4 50086555 -7.36 -7.66 Ser116, Glu380, His438, Ser510 7 35 55.6

C5 49647140 -7.143 -7.04 Ser116, Met436, His438, Lys463 7 29 55.21

C6 47195345 -7.11 -8.14 His438, Asp325, Glu380, His87, His535 7 37 28.24

C7 49644096 -7.07 -7.37 Asp325, Glu380, Ser510, His 535 4 39 37.43

C8 24779308 -6.88 -7.29 His 87,Asp325, Glu380,His535 6 38 37.29

C9 17504161 -6.57 -7.92 Ser116, Asp435, Met436, Lys463 9 32 53.68

C10 11532952 -6.52 -7.57 His438 9 36 36.43

Kumari et al. BMC Structural Biology  (2016) 16:12 Page 9 of 11



features of the ligands which are important for the bio-
logical activity of the inhibitors. The pharmacophore mod-
eling showed that hypothesis DHRR.31 represented the
best pharmacophore model for determining PfM18AAP in-
hibitory activity. Results suggested that the proposed
DHRR.31 model can be used to identify the new M18AAP
inhibitor and to design a drug rationally for p. falciparum
from the extensive 3D database of molecules. Further,
HTVS using Glide resulted in several potent PfM18AAP
inhibitors from ChEMBL antimalarial data set of 153,873
compounds. These novel compounds having an excellent
binding affinity with PfM18AAP are better candidates to
design the drug in future. Finally, the 3D QSAR model was
deployed on different data set to prioritize PfM18AAP in-
hibitors and predict new inhibitors. Thus, our study advo-
cates the use of combined approaches of 3D QSAR,
pharmacophore modeling, and molecular docking to search
for novel potential inhibitors unique to PfM18AAP, which
is essential and validated drug target involved in performing
various enzymatic functions such as hemoglobin digestion,
erythrocyte invasion, and parasite growth in the host cell.
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