
RESEARCH ARTICLE Open Access

The C-terminal domain of TPX2 is made of
alpha-helical tandem repeats
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Abstract

Background: TPX2 (Targeting Protein for Xklp2) is essential for spindle assembly, activation of the mitotic kinase
Aurora A and for triggering microtubule nucleation. Homologs of TPX2 in Chordata and plants were previously
identified. Currently, proteins of the TPX2 family have little structural information and only small parts are covered
by defined protein domains.

Methods: We have used computational sequence analyses and structural predictions of proteins of the TPX2
family, supported with Circular Dichroism (CD) measurements.

Results: Here, we report our finding that the C-terminal domain of TPX2, which is responsible of its microtubule
nucleation capacity and is conserved in all members of the family, is actually formed by tandem repeats, covering
well above 2/3 of the protein. We propose that this region forms a flexible solenoid involved in protein-protein
interactions. Structural prediction and molecular modeling, combined with Circular Dichroism (CD) measurements
reveal a predominant alpha-helical content. Furthermore, we identify full length homologs in fungi and shorter
homologs with a different domain organization in diptera (including a paralogous expansion in Drosophila).

Conclusions: Our results, represent the first computational and biophysical analysis of the TPX2 proteins family and
help understand the structure and evolution of this conserved protein family to direct future structural studies.

Keywords: TPX2, Protein sequence tandem repeats, Protein sequence analysis, Protein structure prediction, Alpha-
solenoid, Circular Dichroism

Background
Spindle assembly involves the activities of multiple pro-
teins that participate in localized microtubule nucleation,
dynamics, and organization [1]. One of these proteins is
TPX2 [2]. TPX2 was initially identified as a
Microtubule-Associated Protein (MAP) responsible for
the localization of the kinesin-like protein Xklp2 to
microtubule minus ends during mitosis [3, 4]. In tissue
culture cells, TPX2 is cell cycle regulated [5]. It accumu-
lates in the nucleus during S/G2, at the spindle poles
during mitosis, and it is degraded in early G1. In
addition, experiments in Xenopus egg extracts have
shown that TPX2 is regulated by the GTP-bound form
of Ran [6] and triggers the local nucleation of

microtubules around chromosomes. This activity is es-
sential for spindle assembly in the presence or absence
of centrosomes, in egg extract, and in tissue culture cells
[5, 6]. Recently, it was found that TPX2 reduces micro-
tubule growth and shortening by reducing the tubulin
subunit off-rate from the microtubule tip [7].
TPX2 has other important functions, including a role

in spindle pole organization [8] and in targeting and ac-
tivating the mitotic kinase Aurora A [9–12]. Recent re-
search points to other functions of TPX2 in non-mitotic
cells [13]. For example, during interphase, TPX2 is re-
cruited into the nucleus where it seems to have an alter-
native function in the cellular response to DNA damage
[14]; a function in neurogenesis has also been shown
[15]. Knowing the structure of TPX2 would help to
understand the complex interactions and different loca-
tions of TPX2. However, little is known about the struc-
ture of TPX2 proteins.
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Homologs of TPX2 were described in Chordata and in
plants, where the function of the orthologue was func-
tionally demonstrated [16]. But, the high sequence diver-
gence of the TPX2 family of proteins and its presumed
absence in other organisms has made difficult its phyl-
ogeny analysis to trace its emergence and evolution. The
N-terminal Aurora A binding motif was identified in
various species at the base of Metazoa (Placozoa: Tricho-
plax adhaerens) or even of Eukarya (Choanoflagellida:
Monosiga brevicollis) [17].
Later, a homolog in drosophila, D-TPX2 (Ssp1/Mei-

38), was identified that has low sequence similarity to
the spindle-microtubule associated part but not to the
Aurora A binding domain [18]. D-TPX2 localized with
kinetochore microtubules in early mitosis and thus was
proposed as the ortholog of TPX2. However, this pro-
posed ortholog did not recapitulate most of TPX2 func-
tion. In addition, this short version of TPX2 was not
found in ants, bee or wasp, which have instead the verte-
brate/plant like version.
To complete the evolutionary and structural informa-

tion on the TPX2 family we therefore decided to search
for further homologues of TPX2, using sequence similar-
ity analysis on sequence databases. We found further
paralogs in drosophila and remote full length homologs
in fungi. Additionally, our analysis revealed the presence
of a variable number of tandem repeats in the C-
terminal of all TPX2 related proteins making up a do-
main that covers more than 2/3 of the Chordata TPX2,
which we predict to adopt an alpha-solenoid conform-
ation. These findings have important consequences for
our understanding of the interactions, functions and
regulation of TPX2.

Methods
Computational sequence analysis
Initial identification of the repeats was done with
HMMer [19] and we applied the REP algorithm [20] for
the detection of all the instances of the repeat. Alignments
were produced with HMMer [19], T-Coffee [21] and
MUSCLE [22] using default parameters and were slightly
refined manually. Phylogenetic trees and the image of the
alignment were produced with ClustalW [23].
Protein secondary structure was predicted using the

manually curated alignment of the repeats with Jnet
(without homology search) [24] for different repeats of
the human protein, and using full length human TPX2
with SABLE [25].

Protein expression and purification
Full length Arabidopsis and Xenopus TPX2 were
expressed as recombinant six-histidine tagged N-
Terminal fusion proteins. Briefly, bacteria BL21(DE3)
(Stratagene) cells were grown at an optical density of 0.7

(OD600) and induced for 5 h with IPTG at 1 mM. Bac-
teria were harvested by centrifugation and cell pellet
were resuspended in a solution containing 15 mM imid-
azole, 20 mM HEPES, 150 mM KCl, 1 mM dithiothreitol
(DTT), pH7.7 and 1 % Triton X-100. Cells were soni-
cated, centrifuged and the soluble fraction was incubated
with 5 ml complete His-Tag Purification Resin (Sigma)
at four degrees for 2 h with continuous inversion mix-
ing. After 3 washes of lysis buffer, proteins were eluted
with the same buffer containing 300 mM imidazole. Fi-
nally, proteins were further purified by size-exclusion
chromatography with a Superdex 200 (GE Healthcare)
equilibrated with 10 mM NaPO4, pH 7.4 and proteins
concentration was determined by Bradford.

CD spectropolarimetry
Circular dichroism (CD) spectra from TPX2 proteins
(10 μM in 10 mM NaPO4, pH 7.4) were recorded on a
on a Jasco-710 spectropolarimeter at 25 °C, over the
wavelength range of 190 to 260 nm with 0.2 mm path.
The spectra in the far-ultraviolet region required an
average of ten scans and were subtracted from blank
spectra performed with buffer [26, 27]. Secondary struc-
ture content was estimated using the K2D3 method [28].
The predicted percentages of secondary structure for
atTPX2 and xlTPX2 indicated high alpha helical content
(62 and 51 %, respectively) with some beta-sheet (15 and
14 % of beta-sheet, respectively).

Three-Dimensional (3D) model prediction and validation
Structural modeling and visualization of the protein
structure of TPX2 repeats were performed using itera-
tive threading assembly refinement (I-TASSER software)
[29]. Amino acid sequence (191–715) of each repeat
from X. laevis TPX2 (accession number: AAF81694) was
uploaded in FASTA format to I-TASSER and tertiary
structures were predicted in PDB format for individual
repeats. Energetic stability of each repeat was evaluated
with FRST Energy Validation software [30] and each re-
peat model was examined for its compatibility with the
sequence alignment. An initial structural model of X.
laevis TPX2 was assembled with PyMol (version v1.7.2
software) [31]. Then the model was further refined by an
iterative procedure. To validate the structural model, we
assessed its quality in terms of covalent bonds, packing,
torsion angles and flexibility.

Results
Identification of TPX2 homologs
We searched the sequence databases for putative homo-
logs of vertebrate TPX2. In addition to the previously
described homologs, we found full length homologs in
multiple fungal species without a clear pattern in their
taxonomic distribution. Differently, we appreciated a
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clear taxonomic pattern within insects, where whole
length orthologs were found in hymenopterans (Fig. 1a),
while dipterans (including the fly) had a shorter version
(Fig. 1b). In addition to D-TPX1 we could identify two
other paralogs in Drosophila (Fig. 1b).
Multiple sequence alignment of the TPX2 protein ho-

mologs revealed a highly conserved C-terminal region.
The N-terminal Aurora A binding motifs identified in [16]
aligned also with the fungal and hymenopteran homologs
(Additional file 2).
For comparison, there are currently three entries in the

PFAM database of protein domains (as of 20 April 2016;
[32]) covering human TPX2. Aurora-A bind (PF09041),
matching aa 1–68, is found in 43 species restricted to Eute-
leostomi (e.g., fish, coelacanth and Tetrapoda), and thus
seems not to cover all the sequences having the Aurora A

binding motif. The other two have much wider distributions.
TPX2_importin (PF12214) matching aa 361–489 and TPX2
(PF06886) matching 662–718, are found in 113 and 145
species, respectively: in plants, Stramenopiles (algae), fungi
(3 and 22 species, respectively, not in e.g., Saccharomyces
cerevisiae), Alveolata (Tetrahymena thermophila), Choano-
flagellida (Monosiga brevicollis) and diverse Metazoa.
The PFAM hits do not match dipteran homologs,

reflecting their divergence from the long version of
TPX2. Neither PFAM hits, nor our own results included
matches in Caenorhabditis species.

The C-terminal part of the TPX2 homologs shares a series
of repeats
Careful inspection of the alignment of the TPX2 homo-
logs indicated a number of blocks of conservation that

Fig. 1 Phylogenetic trees of TPX2 homologs. a Phylogenetic tree of full length orthologs of TPX2 in representative species. b Phylogenetic tree of
short orthologs of TPX2 in representative dipteran species. Drosophila has three paralogs. The labels indicate species and length of the protein.
Numbers in the tree represent bootstrapping values. The sequences and NCBI identifiers are available as Additional file 1 and Additional file 3 for
(a) and (b), respectively. The multiple sequence alignments used to do the phylogenetic trees are available as Additional file 2 and Additional file
4 for (a) and (b), respectively
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were apparently repeated in several parts of the align-
ment. As this was an indication of putative protein re-
peats, we followed an iterative procedure to define these
repeats, align them, and identify new ones within these
sequences. The multiple sequence alignment of TPX2
repeats from human, Xenopus laevis and Arabidopsis
thaliana is displayed in Fig. 2a.
The repeat length is of about 50 aa, and the occur-

rence of nine repeats in tandem at the C-terminal of
these sequences, plus small inserts between repeat units,
results in a domain of about 500 aa, thus covering the
majority of full length TPX2 (Fig. 2b).
Computational prediction of secondary structure of

the repeat region indicated the presence of alpha-helical
structure in the first half of the repeat (red box in
Fig. 2a). No coherent predictions could be obtained for
the rest or the repeat unit.

The C-terminal part of the TPX2 is α-Helical
To validate our computational predictions, we generated
recombinant Xenopus laevis and Arabidopsis thaliana
TPX2 proteins (xlTPX2 and atTPX2, respectively). After
purification, proteins were submitted to SDS-PAGE
followed by coomassie staining to assess their degree of
purity (Fig. 3a). Both proteins migrated as a single band
at around 90 KDa, as expected by the predicted molecu-
lar weight for xlTPX2 (82383 Da) and atTPX2
(86477 Da).

To investigate TPX2 secondary structure, both pro-
teins were analyzed by circular dichroism (CD). Interest-
ingly, CD spectra in the far-UV region, revealed two
ellipticity minima at 208 nm and 222 nm, characteristic
of proteins with high alpha-helix structure content
(Fig. 3b). The predicted percentages of secondary struc-
ture for atTPX2 and xlTPX2 indicated an alpha helical
content of 69 and 68 %, respectively, connected by coil
or unstructured region structure accounting for 31 and
34 % of the secondary structure. These findings are con-
sistent with the alignment generated and the presence of
a conserved repeat in the C-terminal of TPX2. To fur-
ther validate our findings we performed three dimen-
sional structural modeling of xlTPX2 C-terminal domain
(Fig. 3c). The TPX2 model, was generated by modelling
each repeat defined in Fig. 2a. For each individual repeat,
amino acid sequences were uploaded in FASTA format
to I-TASSER. The predicted structures for each repeat
were selected based on the confidence score (c-score),
energetic stability and its compatibility with the struc-
tural prediction obtained by sequence alignment. Conse-
quently, the final model was built with homology to the
following structural PDB templates: 3x29A, 4cgyA,
4h0sA, 2be4A, 4ixjA, 1ad6, 2q1fA, x4by6A and 5J0H.
The average values of the models for all the repeats were
c-score = −0.3, estimated TM-score = 0.53 ± 0.15 and es-
timated RMSD = 5.5 ± 3.5 Å. The structural model of
xlTPX2 was further refined, using an iterative procedure

Fig. 2 Repeats in TPX2 proteins. a Multiple sequence alignment of tandem repeats in Xenopus laevis, human and A. thaliana TPX2. The red box
indicates a summary of predictions for an alpha-helix (see Methods for details). b Position of repeats in human TPX2. UniProt database identifiers
are Q6NUF4 for xlTPX2, Q9ULW0 for TPX2_HUMAN, and F4I2H7 for atTPX2. The multiple sequence alignment is available as Additional file 5
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Fig. 3 (See legend on next page.)
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with 3Drefine [33] and GalaxyRefine software [34]. The
quality and validity of the structural model was con-
firmed using the Protein Structure Evaluation Suite &
Server [35]. Upon analysis, we could confirm that the
structural model was coherent based on its Ramachan-
dran diagram (Fig. 3d), obtained with the Rampage soft-
ware [36]. Interestingly, no beta strands were visualized
in these repeats, and predominance of alpha helical con-
tent was calculated as seen by the three dimensional rep-
resentation and Ramachandran plot (Fig. 3c and d).
Taken together, these results suggest that TPX2 repeats
are mostly composed of alpha helices, although experi-
mental structural validation will be needed to confirm
this result.

Discussion
The TPX2 family of proteins of microtubule nucleators
seems to be present in full length (with an Aurora A
binding site) in most eukaryotic species, with apparent
loses in scattered taxa (e.g., S. cerevisiae and C. elegans)
or substitutions for shorter forms (e.g., dipterans). TPX2
proteins share a C-terminal region, which is necessary
and sufficient for their activity in triggering microtubule
nucleation [37]. Our computational and biophysical ana-
lysis of TPX2 shows that this region is composed of a
variable number of tandem repeats containing alpha-
helical segments. There are many structural repeats
formed by alpha-helices (e.g., Armadillo, HEAT, TPRs)
that are often involved in protein-protein interactions
[38] and have been described as alpha-solenoids [39]. At
a length of 50 amino acids, TPX2 repeats fit very well
with the lengths described for these types of repeats. We
hypothesize that TPX2 interacts in this region with one
or more protein partners, being this interaction crucial
for TPX2-mediated microtubule nucleation.
A 3D structure of a complex between a Xenopus laevis

TPX2 fragment in the repeat region was solved in com-
plex with importin-alpha (PDB:3knd) [40]. This shows
that the nuclear localization signal in X. laevis TPX2 284-
KRKH-287 is recognized by importin-alpha (bound to the
minor NLS-binding site). The fragment used was 270–350
because smaller fragments did not give good quality crys-
tals for X-ray crystallography. Residues 327-KMIK-330
were bound to another recognition site in importin-alpha
(major NLS-binding site). We take the fact that the frag-
ment that successfully formed a crystal includes a full re-
peat (see Fig. 2a) as an indication that our definition of the

repeat unit is correct. In this structure, the TPX2 fragment
is solved in only two stretches that are extended and seem
not to adopt secondary structure. The arrangement of the
fragments does not agree with an expected folded struc-
ture of the repeat where the start and end occupy posi-
tions near in space, as it is usual in structural units of
tandem repeats [38]. We hypothesize that the nuclear
localization signal in TPX2 is hidden and becomes ex-
posed upon interaction with other molecules which would
disorganize the repeat unit holding it (repeat #3 in Xen-
opus) separating the repeats 1–2 from the 4–9. We have
proposed a similar unfolding mechanism of tandem re-
peats triggered by phosphorylation for the mineralocorto-
coid receptor, which contains a region with tandem
repeats that holds multiple phosphorylation sites [41].
Similarly, human TPX2 has a number of phosphorylation
sites in the tandem repeat region that are cell cycle
dependent (serines 292, 293, 486 and 738; [42]). This
could be a general mechanism by which the structural
flexibility of tandem repeats could be exploited.
Here, by finding full length homologs in fungi and

other primitive unicellular species, we have completed
the phylogenetic distribution of the TPX2 family, which
seems to have appeared very early after the emergence
of eukaryotic organisms, pointing to an ancient and cru-
cial function in the organization of cell division. Regard-
less, it has been noted that the variability of domain
organization of the members in this family suggests that
while TPX2 functions might be widely conserved in
Eukarya, diverse functional modules could be placed in
different proteins or functions performed by other pro-
tein families [13]. TPX2 apparent absence in many fun-
gal species, or its replacement with a shorter version in
dipterans agrees with this.
Accordingly, although a homolog of TPX2, TPXL-1,

was identified by homology to the Aurora A kinase bind-
ing domain in C. elegans [43], the authors were not able
to demonstrate the nucleation activity of this protein
characteristic of the TPX2 proteins family [2] and the se-
quence similarity to the Aurora A kinase binding site
was challenged [17]. Therefore, there is not enough evi-
dence to claim that this particular C. elegans protein is a
TPX2 homologue [44] and thus Caenorhabditis, like
dipterans, seems to have got away with a different sys-
tem to substitute TPX2 function.
In all, our analyses suggest a structure for a large frac-

tion of the TPX2 protein while stressing their

(See figure on previous page.)
Fig. 3 Biochemical and structural analysis of TPX2. a SDS-PAGE analysis of Xenopus and Arabidopsis TPX2 proteins. b Spectra in the region of
260–190 nm were obtained at 25 °C for full length xlTPX2 and atTPX2. Both spectra present a typical alpha helical profile with two minima (λ208 and
λ222 nm). c Molecular model of xlTPX2 (Q191-K715) represent a compact structure of repeated α-helices linked by a flexible loop. d Ramachandran
plot of the xlTPX2 model. About 96 % of all residues were in favored regions, and about 4 % of the residues were in an allowed region. Two outliers
were found, Leucines at positions 173 and 302, although, visual inspection did not reveal any steric clash
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evolutionary flexibility. The tandem repeat region could
be involved in transient protein-protein interactions reg-
ulated by cell-cycle dependent phosphorylation. We
trust that this information will be helpful to direct future
experiments in any of the members of this taxonomically
widely distributed family.

Conclusions
Here, we have characterized a novel repeat region in the
spindle pole protein TPX2. We predict that this region
folds into a domain composed of an ensemble of alpha-
helical tandem repeats. This region covers more than 2/
3 of the protein, thus this is an important result since so
far there is absolutely no structural information regard-
ing TPX2.
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