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Abstract

Background: In the backdrop of challenge to obtain a protein structure under the known limitations of both
experimental and theoretical techniques, the need of a fast as well as accurate protein structure evaluation method
still exists to substantially reduce a huge gap between number of known sequences and structures. Among
currently practiced theoretical techniques, homology modelling backed by molecular dynamics based optimization
appears to be the most popular one. However it suffers from contradictory indications of different validation
parameters generated from a set of protein models which are predicted against a particular target protein. For
example, in one model Ramachandran Score may be quite high making it acceptable, whereas, its potential energy
may not be very low making it unacceptable and vice versa. Towards resolving this problem, the main objective of
this study was fixed as to utilize a simple experimentally derived output, Surface Roughness Index of concerned
protein of unknown structure as an intervening agent that could be obtained using ordinary microscopic images of
heat denatured aggregates of the same protein.

Result: It was intriguing to observe that direct experimental knowledge of the concerned protein, however simple
it may be, might give insight on acceptability of its particular structural model out of a confusion set of models
generated from database driven comparative technique for structure prediction. The result obtained from a widely
varying structural class of proteins indicated that speed of protein structure evaluation can be further enhanced
without compromising with accuracy by recruiting simple experimental output.

Conclusion: In this work, a semi-empirical methodological approach was provided for improving protein structure
evaluation. It showed that, once structure models of a protein were obtained through homology technique, the
problem of selection of a best model out of a confusion set of Pareto-optimal structures could be resolved by
employing a structure agent directly obtainable through experiment with the same protein as experimental
ingredient. Overall, in the backdrop of getting a reasonably accurate protein structure of pathogens causing
epidemics or biological warfare, such approach could be of use as a plausible solution for fast drug design.
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Background
Development of method to provide fast solution of
protein structure is important for many reasons. First
off, important roles of proteins particularly in living
systems, such as, regulating, catalyzing, and triggering
many biological, immunological as well as pathophysio-
logical processes. This has led to development of both
experimental and theoretical prediction methods to
accomplice this task. However, experimental methods
are constrained with want of protein crystals for X-Ray
Crystallography; smaller proteins (< 80 KD) for NMR
and lengthy experimental time (nearly 2 years) for both
of these methods [1, 2]. On the other hand, theoretical
prediction methods are although quite fast, suffers limi-
tation of less accuracy and reliability [3]. This creates an
apparently unbridgeable huge gap between number of
proteins and their known structures [4]. The most popu-
lar theoretical prediction method, homology modelling
builds initial structure model through comparison of
similar templates searched out from database of known
protein structures [5–8]. The initial model is subse-
quently optimized through Molecular Dynamics Simula-
tion producing a set of Pareto-optimal candidate
structure models. The trouble starts from there due to
confusion posed by contradictory indication of different
validation parameters for different models of the same
target protein. For example say, Ramachandran score of
a model is quite high while its potential energy is not
that low and vice versa. The complexity further increases
due to addition of more important validation parame-
ters, such as, G-factor which gives account of model’s
adherence to steric hindrance property, Verified 3D pro-
viding insight to compatibility of an model with its own
amino acid sequence, etc.. Drawbacks of knowledge
based validation parameters used for acceptability of
protein structure are well reported in the review of
Kihara et al. [9]. For this reason, functional utilization of
structure models outputted by comparative prediction
methods is very challenging [9]. This piece of work put
effort to resolve this problem through the intervention
of simple experimental output obtainable from the target
protein. The idea is that a protein of known sequence
can be isolated, purified into a sizeable quantity to per-
form many simple experiments on it. Examples of such ex-
periments are: study on patterns of temperature-function
kinetics, pH-function kinetics in presence of substrates, ag-
gregation through heat denaturation, emission-absorption
spectra etc.. It appears to be interesting to see whether any
of such experimental output can be utilized to select best
structure model out of a set of such models resulted in
through theoretical exercise. Furthermore, to corroborate
correctness of theoretically found models through such
experimentally found information there must be a common
parameter that can be extracted both from the

experimental information as well as from the structures.
Only then, this common parameter extracted from experi-
ment can be stored and utilized as standard to compare its
closeness with that extracted from predicted structure
models for picking the closest one as the best structure
model. Also, this common parameter should also have the
attribute of uniqueness at least for the target protein class if
not for the actual protein itself. In search of such parameter,
in this study first it was identified that Surface Roughness
Index (SRI) of a protein as derived, calculated from its
known structure by Singha et al. [10] might be utilized as
common structure parameter since it could also be
extracted through experiment on the same protein as
depicted by Mishra et al. [11]. In this regard the role of
predicted SRI was to serve as a standard parameter that
can be compared for its closeness with the values calculated
from the predicted models to pick the best structure solu-
tion under the premise: closest model was the best one.
Finally this semi-empirical structure validation method was
tested for some judiciously chosen proteins taken from pro-
tein data bank (PDB) of widely varying structure class
which could also be procured through purchase for further
experimentation. To test whether the method could match
the real life challenge for protein structure evaluation, the
template search step of Homology Modelling was specific-
ally employed to select first three templates with sequence
similarities less than equal to 77% applying BLASTP. The
cut-off 77% was chosen considering the fact that a sequence
similarity more than 90% guaranteed to produce structure
comparable to X-Ray crystallographic structure of a protein
except for a few individual side chains [17–19] thus making
this study unnecessary. Also, the first hit having 100% simi-
larity was intentionally ignored since this was the target
protein itself and already present in PDB. In the next step,
for the output structure models generated through Hom-
ology Modelling, different knowledge based validation pa-
rameters were calculated. As expected contradictory
indications from these validation parameters generated a
confusion set of structure models the correctness of which
was finally resolved by the use of experimentally extracted
value of SRI. The final validation of the selected model was
done by comparing root mean square deviation (RMSD) of
backbones of all models with that of reported PDB struc-
ture of the target protein.

Methods
Description of proteins used in this study
Six proteins, albumin, cytochrome c, ferritin, lysozyme,
insulin and hemoglobin which could be procured
through purchase from the market as well as reported in
the PDB site were selected and finally purchased from
Sigma Aldrich (USA). Also, these proteins were chosen
for experimentation for their widely varying structural
properties where the structural properties, class, fold,
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super family, family, duplication and species as retrieved
for these proteins from SCOP [20] were given in the fol-
lowing Table 1. Sample size of such proteins were in
concurrence with Sandelowski, 1995 [21].

Obtaining structure models of proteins using homology
modelling
To get structure models of a protein Easymodeller Graph-
ical Interface of Kuntal et al. [12] was used to implement
Modeller [5–8]. To avoid self-matching with already
stored PDB template for the same protein, and also, to
avoid templates of very high sequence similarity leading to
near perfect solution of structure (as already described in
Introduction Section) [17–19], first three templates with
sequence similarity obtained through BLASTP ≤77% were
chosen as input to Modeller.

Application of existing validation parameters for selection
of best model
Energy Score of a protein was calculated as Random
Walk potential following the method of Knowledge

Based Scoring Function as described by Zhang and
Zhang [13]. However, for calculation of Ramachandran
Score and G factor Procheck NT Suite [14] was down-
loaded from http://www.ruppweb.org/ftp_warning.html
and utilized. Verified 3D (% residue) was calculated
using Structure Analysis and Verification Server (version
4) following the protocol of Bowie, et al. [15] and Luthy
et al. [16]. The justification for choosing these validation
parameters was that these parameters were commonly
computable for all proteins utilized in this work.

Calculation of surface roughness index (SRI) of a given
protein structure following published protocol
One of the structural component of a protein, its surface
was characterized by a 8 valued vector SRI [10]. Each
element of this vector can be calculated as standard
deviation of distances of its surface residue-points repre-
sented by the C-alpha atoms of surface residues falling
within a particular octant of a invariant coordinate
system (ICS) (described latter) from the protein-centre
that is calculated as the average coordinate of all

Table 1 Widely varying structural classes of the proteins selected for experimentation

PDB
id

Protein name Class Fold Super family Family Duplication Species

1ao6 Serum albumin All alpha proteins Serum albumin-like
multihelical; one do-
main consists of two
similar disulfide-
linked subdomains

Serum albumin
link to
SUPERFAMILY
database -
Superfamily

Serum
albumin

consists of
three
domains of
this fold

Human (Homo
sapiens)

1new Cytochrome c7 (cytochrome
c551.5, PpcA)contains three
heme groups; deletion of one
of Cyt c3 heme-binding sites

All alpha proteins Multiheme
cytochromes variable
number of helices
and little beta
structure; not a true
fold

Multiheme
cytochromes

Cytochrome
c3

contains
multiple
CxxCH motifs
link to
SUPERFAMILY

Desulfuromonas
acetoxidans

1ro3 Echistatin Small proteins
Usually dominated
by metal ligand,
heme, and/or
disulfide bridges

Blood coagulation
inhibitor (disintegrin)
small disulfide-rich

Blood
coagulation
inhibitor
(disintegrin)
link to
SUPERFAMILY
database -
Superfamily

Blood
coagulation
inhibitor
(disintegrin)

Not Reported Saw-scaled viper
(Echis carinatus)

2vb1 Lysozyme ubiquitous in a
variety of tissues and
secretions

Alpha and beta
proteins Mainly
antiparallel beta
sheets (segregated
alpha and beta
regions)

Lysozyme-like
common alpha+beta
motif for the active
site region

Lysozyme-like
Superfamily

C-type
lysozyme

Not Reported Chicken (Gallus
gallus)

2h8b Insulin from Human (in
absence of report for 2h8b
other columns were filled in
for 1ben)

Small proteins
(hormone)

Insulin-like nearly all-
alpha
can be classified as
disulfide-rich

Insulin-like link
to
SUPERFAMILY
database -
Superfamily

Insulin Not Reported Human (Homo
sapiens)

1a3n Hemoglobin, alpha-chain
from Human

All alpha proteins Globin-like core: 6
helices; folded leaf,
partly opened

Globin-like link
to
SUPERFAMILY
database -
Superfamily

Globins
Heme-
binding
protein

Not Reported Human (Homo
sapiens)
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C-alpha coordinates of that protein. In short, as de-
scribed by Singha et al. [10], ICS of a protein can be cal-
culated following the steps given below:

Step1: Origin (O) of ICS of a protein is calculated as
average coordinate of C-alpha coordinates of all of its
residues as shown in (Fig. 1a).
Step2: Line joining O and maximally distant C-alpha
coordinate is considered as z-axis of ICS as shown in
(Fig. 1b).
Step3: Plane normal to z-axis and passing through O is
considered as xy-plane. The C-alpha atom which satis-
fies two constraints: first, it lies within a lamellar space
of width 4 Å i.e., within a distance of 2 Å from each
side of the xy-plane, and second, its distance from O is
maximum among all other C-alpha atoms within this
lamellar space, is considered to create x-axis with O as
the line joining its projection on xy-plane (P) and O.
This step is further clarified in (Fig. 1c).
Step4: Line passing through O and perpendicular to
both x and z-axis is considered as y-axis as shown in
(Fig. 1d).
Step5: The PDB coordinates of all the atoms of a
protein are transformed to ICS following simple
geometric rule of coordinate transformation.

Experimental steps in details leading to prediction of SRI
following published papers
SRI of a protein was also predicted through simple ex-
periment from its heat denatured aggregate (HDA) fol-
lowing protocol described by Mishra et al. [11], steps of
which were given below:

Step 1: Solution of the concerned protein was prepared
in milipore water at concentration 25 mg/cc and put in
hot water bath at temperature 100 °C for 15 min to
obtain its HDA.
Step 2: 10 μL of HDA solution of the protein was put
in a hemocytometer slide (Model: Neubauer Chamber,
Marienfeld, Germany) and covered with thin
microscopic glass cover slip. Subsequently, it was
visualized at 400X magnification using phase contrast
microscope (Leica Model DML-B2).
Step 3: Digital images of aggregates were captured
using a camera (Canon PowerShot S50) at optical
zoom 2X. Thus cumulative optical zoom of the
microscope and camera was 800X. 50 images of HDA
at different locations of slide were captured for each
protein.
Step 4: Grey scale converted and 1/3rd resized images
of HDAs were manually segmented out using MS Paint
XP software having intensity range from 0 to 255.
Segmented image was further splitted into 10 binary
images on the basis of filtering through fixed intensity-
ranges by applying the rule described by Mishra et al. [11].
Fractal dimension of each of these binary HDA images
were calculated through box-counting method to obtained
10 valued Intensity Level Based Multifractal Dimension
(ILMFD). This step is further clarified in (Fig. 2).
Step 5: A non-parametric function was designed
employing Recurrent Backpropagation Neural Network
(RBPN) as shown in (Fig. 3) with capability of taking
multiple inputs (10 valued ILMFD) and deliver multiple
outputs (8 valued SRI after normalization). For optimiz-
ing this function 70% of images (i.e., 35 out of 50

Fig. 1 Steps of creation of Invariant Coordinate System (ICS) as described in steps for calculation of SRI: a) origin, b) Z-axis, c) X-axis and d) Y-axis
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images) were used for training and remaining 30%
(15 images) were used for testing purpose. For en-
hancing prediction accuracy through removal of ill-
posed noisy data, 15 function-outputs (each of
which were 8 valued candidate for predicted SRI)
were further passed through a two tier hierarchical
clustering method to finally select the centre of the
optimally chosen cluster as predicted SRI after
denormalization following the algorithm of Mishra
et al. [11].

Steps describing selection of best model using predicted
SRI of original protein and calculated SRI of its models
Steps followed to select best structural model of a pro-
tein were given below:

Step1: SRI of each of the structure models of a
protein obtained through methodology section 2
were calculated using protocol described in
methodology section 4 and designated as SRI_CM.
The same method was applied to calculate original
protein structure obtained from PDB and was
designated as SRI_C.
Step2: SRI of the original protein was predicted
through experiment as described in methodology
section 5 and was designated as SRI_P.
Step3: Euclidean distance, DCMOD between SRI_CM of
a model and SRI_C was calculated and it was repeated
for all the models. The model with least distance (i.e.,
that closest to the original) was selected as the best
structure model of this protein.

Fig. 2 A flowchart depicting extraction of ILMFD parameters from HDA images

Fig. 3 The neural network architecture serving as a non-parametric function to map ILMFD into predicted SRI

Pal et al. BMC Structural Biology           (2018) 18:16 Page 5 of 10



Step4: Step3 was repeated to calculate distance, DPMOD

by replacing SRI_C with SRI_P and the best structure
model for the same model was selected.
Step5: Euclidean distances between coordinates of
corresponding Cα atoms of a model and original PDB
structure were calculated and Root Mean Square
Deviation of these distances were stored. Similarly
RMSDs for all the models from original structure were
calculated. The model with least RMSD was selected
for final validation. For calculation of RMSD between a
pair of protein structures, coordinates of both of these
structures were transformed under Invariant
Coordinated System (ICS) as described in
methodological section 4.

Step 1 to 5 was repeated for all the 6 proteins used in
this study.

Results
To check coherency in protein structure validation pa-
rameters, results of calculation of above-referred valid-
ation parameters, Energy Score as Knowledge Based
Scoring Function (KBSF), Ramachandran Score (RS), G
factor (GF) and Verified 3D (% residue) (V3D) were
shown in Table 2 for all the protein models obtained
through Modeller along with their PDB structures. How-
ever, it was evident from the best matches of the models
for a particular protein and validation parameter, the co-
herency did not exist. For example, in case of albumin,
KBSF indicated 2nd model as best, while V3D showed
5th model as the best. Similarly it was shown for all
other proteins.
The values of SRIs both calculated from known struc-

ture and predicted through experiment for the proteins
were shown in Table 3 from which parameters DCMOD

and DPMOD were calculated.
List of data similar to that shown in Table 2 were pre-

pared using DCMOD, DPMOD and RMSD parameters as
described in methodology section 6 replacing the valid-
ation parameters where best models were obtained using
least values of all these parameters. It was intriguing to
find that there existed a concurrency of decision pro-
vided by all these parameters as shown in Table 4 except
for albumin and insulin the explanation for which was
given in discussion section.
The diversity in the physiochemical properties and

number of residues of the proteins selected for this study
was shown in Table 5 below:

Discussion
Objective of this study was to strengthen already existing
theoretical protocol to expedite solution for protein
structure without compromising with accuracy. Towards
this direction, published reports were first explored to

check whether assimilation of already existing methods
can help in achieving the same through development of
a new methodical approach. In this regard, the main
bottleneck as found in this work was to resolve confu-
sion set of models produced by Homology Modelling
with subsequent application of Molecular Dynamics
based optimization techniques as reported by [5–8] and
implemented through Modeller. However, the confusion
in selecting the best model was generated due to inco-
herent decision provided by different validation parame-
ters as shown in Table 2. As for solution, in this study it
was strongly felt to validate those structure models
through comparison with a data that can be directly ex-
tracted from actual protein of concern through simple
experimentation rather than by knowledge based valid-
ation parameters, e.g., KBSF, RS, GF and V3D. In this re-
gard, it was imperative to devise a strategy through
which model structure could be validated both from the
end of the theoretically computable validation parameter
as well as that obtainable from actual protein itself, say,
through simple experimental exercises as discussed in
the Introduction section. It was necessary to see the
convergence of validations from both of these ends since
in real life problem calculation of SRI values from
known protein structure would not be possible and the
predicted SRI extracted through experiment was sup-
posed to serve as the only validation agent. It indicated
requirement of a common validation parameter which
could be obtained both through computational exercise
using structure model and experimental method using
the same protein as its ingredient. Unfortunately no
commonly known existing validation parameters ap-
peared to serve this purpose. However, one such ex-
ample could be found from the report of Mishra and
Lahiri [11] in which a typical structure parameter SRI of
a protein was found to be obtained from a
semi-empirical method using it as experimental ingredi-
ent (as described in methodological section 5) as well as
computable from its structure (if known) Singha et al.
[10]. As designated in methodological section 6, the
need of experimentally extracted parameter SRI_P was
to find minimum of DPMOD to pick the best structure
model comparing SRI to SRI distances of all the models
from SRI_P. Since this methodological approach had to
be validated also, only those proteins were selected, PDB
structures of which were also available and thus their
SRI were also computable (designated as SRI_C) using
method of Singha et al. [10] as described in methodo-
logical section 4. Therefore, it was left as an interesting
exercise to see whether the solution of best model ob-
tained utilizing DPMOD parameter was matching with
that obtained utilizing DCMOD. Interestingly, while Table
4 showed the result as affirmative for all the six proteins,
the final validation of this approach was done by
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utilizing universally accepted parameter RMSD of corre-
sponding Cα to Cα distances between a model and
already evaluated PDB structure of the protein and re-
peating it for all the models of the same protein. As
shown in Table 4, result of selection of best model using
RMSD was further encouraging since it re-confirmed
the result using DCMOD and DPMOD except for the cases

of Albumin and Insulin. In case of Albumin the possible
reason of mismatch might be because of very close prox-
imity of all the models with the original structure as
shown in Table 4. Furthermore, in case of Insulin we
found the solutions obtained through SRI (i.e., the same
5th model obtained through both DCMOD and DPMOD)
and RMSD (the 2nd model) are actually closest to each

Table 2 Different validation parameters obtained for confusion set of models

Name of the proteins Validation Parameters of models

Models Energy Score Ramachandran Score G factor Verified 3D (% residue)

Albumin 1ao6 − 1.1969 × 105 88.50 0.22 92.39

1 −1.2280 × 105 95.1 0.16 94.53

2 −1.2297 × 105 95.4 0.18 96.58

3 −1.2269 × 105 94.7 0.1 97.09

4 −1.2262 × 105 94.1 0.17 96.75

5 −1.2283 × 105 95.2 0.17 99.15

Cytocrome c 1new −6.6803 × 103 65.50 −0.38 79.41

1 − 6.3532 × 103 93.1 −0.03 77.94

2 −6.3340 × 103 91.4 0.00 51.47

3 −6.3668 × 103 89.7 0.01 79.41

4 −6.3291 × 103 84.5 0.01 97.06

5 −6.2220 × 103 89.7 −0.03 73.53

Ferritin 1ro3 −3.4552 × 103 23.7 −0.42 100.00

1 −4.3944 × 103 76.3 −0.23 93.88

2 − 4.2660 × 103 78.9 −0.37 100.00

3 −4.3860 × 103 78.9 −0.21 91.84

4 −3.7259 × 103 65.8 −0.69 97.96

5 −3.9113 × 103 63.2 −0.85 100.00

Lysozyme 2vb1 −1.3138 × 104 88.50 0.01 100.00

1 −2.2767 × 104 93.8 0.06 100.00

2 −2.2488 × 104 93.8 0.05 100.00

3 −2.2639 × 104 91.2 0.04 100.00

4 −2.2616 × 104 94.7 0.08 100.00

5 −2.2564 × 104 94.7 0.03 100.00

Insulin 2h8b −7.5931 × 103 77.8 .28 0.00

1 −4.9314 × 103 84.8 −.16 0.00

2 −4.9427 × 103 91.3 −.22 0.00

3 −5.1093 × 103 91.3 −.08 0.00

4 −4.8367 × 103 80.4 −.15 0.00

5 −4.8419 × 103 80.4 −.10 0.00

Hemoglobin 1a3n −1.2495 × 105 94.0 .21 100.00

1 −1.2209 × 105 91.6 .05 100.00

2 −1.2216 × 105 91.4 .05 99.31

3 −1.2295 × 105 91.5 .05 99.31

4 −1.1820 × 105 88.9 −.26 100.00

5 −1.2216 × 105 91.4 .05 99.31
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Table 3 SRIs predicted from experiment and calculated from structures for proteins and models

Protein name Method to obtain SRI Models SRI

Albumin Predicted through experiment 1ao6 15.10 16.08 22.41 19.45 18.14 9.48 15.04 7.80

calculated 1ao6 8.22 12.68 12.31 7.70 9.91 9.27 10.09 11.62

1 9.43 11.42 7.45 12.94 13.06 9.81 7.84 9.92

2 14.43 11.44 7.11 12.88 11.72 11.68 9.20 9.21

3 8.80 11.27 7.18 13.46 13.82 10.34 9.35 8.29

4 11.03 15.31 13.86 8.48 14.31 8.76 7.41 11.17

5 9.40 11.46 8.55 13.69 13.45 9.64 8.41 9.70

Cytochrome c Predicted through experiment 1new 5.38 5.83 4.70 2.55 5.11 4.19 3.40 3.70

calculated 1new 3.45 5.45 4.24 2.02 3.35 2.88 3.47 3.74

1 4.93 3.77 4.33 1.07 3.11 3.27 3.60 4.07

2 4.01 0.00 1.83 5.01 3.29 3.40 3.99 3.42

3 4.41 7.79 1.75 3.77 2.90 3.32 2.13 3.95

4 3.63 3.58 4.10 1.13 3.66 3.37 4.71 3.97

5 4.88 4.28 3.37 3.75 2.56 3.07 3.60 4.38

Ferritin Predicted through experiment 1ro3 4.12 5.23 4.99 3.08 6.33 3.14 3.66 3.23

calculated 1ro3 0.02 3.20 1.47 0.11 2.14 1.54 2.56 1.77

1 1.73 3.01 1.38 5.41 3.58 0.61 4.92 1.74

2 6.31 3.74 5.98 0.90 1.54 4.50 0.00 4.84

3 2.78 2.66 3.12 4.61 2.77 2.82 3.35 1.37

4 6.43 0.00 7.66 3.60 0.91 3.39 1.42 2.90

5 4.15 2.26 1.90 5.25 3.62 1.79 3.25 0.14

Lysozyme Predicted through experiment 2vb1 3.51 4.29 5.36 4.05 2.84 4.06 4.84 3.93

calculated 2vb1 4.19 3.32 5.05 5.32 4.23 3.05 2.92 3.83

1 4.81 4.51 2.77 3.07 4.24 3.12 3.74 3.83

2 4.06 4.45 2.97 3.30 4.28 2.93 3.63 3.67

3 3.86 4.47 2.79 3.26 4.51 3.06 3.89 3.84

4 4.23 4.49 3.84 3.16 4.33 3.01 3.65 3.97

5 5.81 4.32 2.93 3.03 4.55 2.42 3.76 4.00

Insulin Predicted through experiment 2h8b 4.59 5.37 5.30 6.23 3.67 4.19 3.51 5.39

calculated 2h8b 1.66 6.09 4.07 3.96 2.54 3.20 1.92 4.20

1 2.07 7.54 5.77 2.12 9.05 2.96 3.96 5.67

2 5.53 4.82 3.14 1.55 8.68 5.22 2.71 1.91

3 5.75 2.87 2.42 5.13 6.77 3.96 2.11 4.96

4 7.57 3.27 6.87 2.72 5.49 4.43 1.76 5.99

5 6.66 3.71 4.77 2.86 1.76 3.98 3.04 5.26

Hemoglobin Predicted through experiment 1a3n 5.95 8.82 8.59 10.99 9.28 4.96 8.71 8.36

calculated 1a3n 7.80 8.31 8.69 10.99 8.73 6.31 9.10 6.73

1 8.85 9.44 9.54 10.29 7.77 9.74 7.95 11.05

2 9.12 6.62 9.65 8.43 4.89 7.73 8.46 9.05

3 9.00 5.55 9.52 7.94 4.98 7.69 8.47 8.94

4 7.09 8.35 8.26 8.80 8.40 6.47 9.16 6.49

5 9.12 6.62 9.65 8.43 4.89 7.73 8.46 9.05
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other with lowest RMSD, 4.50. One more interesting
observation as found after comparing results of Table 2
and Table 4 was that, percentage of success of RS, GF
and V3D in selecting best models through predicted SRI
was 50% while that for KBSF was zero only. It indicated
that Ramachandran Score, G factor and Verified 3D
were better validation parameters in comparison to
Energy Score (Knowledge Based Scoring Function). The
possible reason of success in SRI based validation as
shown in this work for almost all the proteins of wide
variety of classes (as shown in Tables 1 and 5) could be
explained through its underlying geometric attribute. As
designed and implemented by Singha et al. [10] SRI
basically represented surface roughness profile of a pro-
tein through an 8 valued surface roughness vector each
element of which actually represented roughness of pro-
tein surface within one out of 8 octants of a 3 dimen-
sional invariant coordinate system containing this
protein. They also showed that proteins could be classi-
fied at the level of SCOP defined classes by SRI with rea-
sonably high efficiency (almost 85%) which indicated
capability of SRI to describe a protein with quite high
structural specificity. This attribute of SRI might be con-
sidered as the most important factor contributing to-
wards its potential to successfully select best structure
model of a protein out of other models. However, SRI
being a key agent for such selection, further improve-
ment could be thought of in the design of SRI through
creation of optimum number of solid angles as argued
by Singha et al. [10] in contrast to 8 in the existing
protocol to increase its specificity for a protein. Further-
more, since SRI not only needed to be calculated from a

given structure, but also to be extracted from a protein
as experimental compound as described by Mishra and
Lahiri [11], the root experimental output ILMFD as de-
scribed above in methodological section 5 might be fur-
ther looked into to consider its replacement by some
other possibly more efficient experimental output e.g.,
two dimensional excitation-emission spectra of protein
suspension within visible light range through simple
spectrophotometry instead of Heat Denatured Aggre-
gates as described earlier.

Conclusions
This work showed a way which could be of help towards
fast solution of a protein structure without
compromising with its accuracy. The importance of this
work was that it provided a methodological approach
through which once structure models of a protein were
obtained through currently best theoretical exercise, say,
Homology Modelling, the problem of selection of a best
model out of a confusion set of same could be re-
solved by employing a structure agent Surface Rough-
ness Index which could be directly obtained through
a semi-empirical method using microscopic images of
Heat Denatured Aggregates of the same protein as experi-
mental ingredient. Overall, in this work it was emphasized
that in absence of an ordered aggregate of protein as its
crystal, experimental use of its irregular assemblies could
also be of help in solving its structure. In the backdrop of
getting a reasonably accurate protein structure of patho-
gens causing epidemics or biological warfare, such ap-
proach could be of use as a plausible solution for fast drug
design to contain their effect.

Table 4 Model selection by new validation parameter, predicted SRI

Proteins Model Selection

Best model using DCMOD Best model using DPMOD Best model using RMSD Mean of RMSD over all models

Albumin 4 4 2 2.94 ± 0.24

Cytochrome C 1 1 1 10.73 ± 6.42

Ferritin 3 3 3 7.90 ± 2.61

Lysozyme 4 4 4 24.31 ± 0.03

Insulin 5 5 2 15.37 ± 2.39

Hemoglobin 4 4 4 29.19 ± 14.70

Table 5 Physiochemical properties and number of residues of selected proteins

Protein name PDB ID Average Hydrophobicity considering all the chains Acidic Basic Neutral No of Residues

Albumin 1ao6 40 16.75 16.92 26.32 585

Cytochrome c 1new 26.47 11.76 26.47 35.29 68

Ferritin 1ro3 20.41 16.33 20.41 42.86 49

Lysozyme 2vb1 34.88 6.98 13.95 44.19 129

Insulin 2h8b 40.20 6.77 13.22 39.83 57

hemoglobin 1a3n 48.10 9.39 16.39 26.12 287
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