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Abstract

Background: It had long been thought that a protein exhibits its specific function through its own specific 3D-structure
under physiological conditions. However, subsequent research has shown that there are many proteins without specific
3D-structures under physiological conditions, so-called intrinsically disordered proteins (IDPs). This study presents a new
technique for predicting intrinsically disordered regions in a protein, based on our average distance map
(ADM) technique. The ADM technique was developed to predict compact regions or structural domains in
a protein. In a protein containing partially disordered regions, a domain region is likely to be ordered, thus
it is unlikely that a disordered region would be part of any domain. Therefore, the ADM technique is
expected to also predict a disordered region between domains.

Results: The results of our new technique are comparable to the top three performing techniques in the
community-wide CASP10 experiment. We further discuss the case of p53, a tumor-suppressor protein, which
is the most significant protein among cell cycle regulatory proteins. This protein exhibits a disordered
character as a monomer but an ordered character when two p53s form a dimer.

Conclusion: Our technique can predict the location of an intrinsically disordered region in a protein with
an accuracy comparable to the best techniques proposed so far. Furthermore, it can also predict a core
region of IDPs forming definite 3D structures through interactions, such as dimerization. The technique in
our study may also serve as a means of predicting a disordered region which would become an ordered
structure when binding to another protein.
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Background
Anfinsen’s discovery [1] that a protein exhibits its spe-
cific function through its own specific 3D-structure
under physiological conditions dominated protein
research for many years. However, proteins without spe-
cific 3D-structure under physiological conditions, known
as intrinsically disordered proteins (IDPs), were later
recognized [2, 3].
Dunker et al. were the first to apply bioinformatics

techniques to the study of IDPs [4] by developing a

program to predict regions with no defined 3D structure
in a protein sequence, called PONDR [5]. Afterwards,
other prediction programs were developed [3].
In such studies, a database of information on IDPs is

indispensable. Among the various databases, DisProt [6]
and IDEAL [7, 8] are widely used for IDP studies.
Surprisingly, IDPs exhibit their functions through

interactions with another protein despite their lack of
well-defined structures. A partial region with no
well-defined 3D-structure is called an intrinsically disor-
dered region (IDR). An example is cyclic-AMP response
element-binding protein (CREB). This protein contains a
partially disordered region which becomes ordered upon
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interaction with its co-activator, CREB-binding protein
(CBP), thereby permiting its function.
Observations suggest that hydrophilic residues in IDRs

are abundant and hydrophobic residues are scarce [4]. In
addition, many simple repetitive sequences are found in
IDRs [9]. Another remarkable property is that IDPs are
abundant in eukaryotes [10]. A non-DNA binding
domain sequence in a transcription factor sometimes
contains disordered or unknown regions with many
IDRs. Of the human transcription factors, 60% show this
property [11]. IDPs with long disordered regions (> 30
residues) are found in about one third of eukaryotic
proteins [10].
There is obvious difficulty in trying to determine their

3D-structures with techniques such as X-ray crystallog-
raphy and NMR analysis. Therefore, research has
focused on developing various techniques to predict
IDRs in an amino acid sequence based on the sequence
alone. These methods rely on various measures like
amino acid propensity, secondary structure propensity
or amino acid contact potential with various techniques
such as support vector machine, neural net and so on
[3]. In the CASP10 experiment, 28 groups submitted
models to predict IDRs. While the models made accur-
ate predictions to some degree, the improvement in
accuracy was still considered slow [12].
Over the years, we have employed methods based on

inter-residue average distance statistics to predict the
folding mechanisms of various ordered proteins. We
developed these techniques further to predict domain
regions in a protein sequence. Our results indicate that
the folding initiation sites of ordered proteins can be
successfully predicted with a technique based on
inter-residue average distance statistics and the informa-
tion of conserved hydrophobic residues [13–17].
A method called DICHOT was developed [18] to pre-

dict the compact regions of a protein. This method
assumes that a structural domain is ordered and thus an
intrinsically disordered region (IDR) must be outside
these compact regions.
Since our technique can predict a compact region in a

protein sequence, the possibility of applying our tech-
nique to IDPs is interesting. The present study proposes
a new technique for predicting IDRs from their sequence

based on a map derived from the inter-residue average
distance statistics, an average distance map (ADM).

Methods
Data set
The proteins examined in this study included completely
ordered proteins, partially ordered proteins, and com-
pletely disordered proteins. In total, 160 completely
ordered proteins with 60 to 219 residues were selected
from the PDB, as shown in Table 1. In addition, 129 par-
tially disordered and 74 completely disordered proteins
were selected from DisProt [6]. The proteins were
assigned to one of eight groups according to the number
of residues in the proteins, as shown in Table 1. These
proteins are summarized in Additional file 1. From each
of the 8 groups, 20 proteins were selected for further
study. We picked proteins from as wide a variety of
sources as possible. In this study, we do not examine
extremely large and complicated proteins: Proteins with
a maximum of two domains are used as targets.

Average distance map (ADM) analysis
An average distance map (ADM) is constructed in a
similar way as a contact map. For an ADM, as with a
contact map, a plot is made on a map for a protein when
the average distance of a pair of residues is less than a
certain threshold. That is, an ADM is constructed from
only the amino acid sequence of a given protein. A
region forming a cluster of plots (pairs of residues) on a
map predicts a portion with short distances between the
residues in the native structure of a protein. Such
regions correspond well to structural domains in pro-
teins [19, 20] and also correspond to structurally com-
pact regions in the early stage of protein folding. The
combination of ADMs and information regarding evo-
lutionally conserved hydrophobic residues has been
amply demonstrated to predict the folding mecha-
nisms of various proteins [13–17].

Calculations of the inter-residue average distances in
proteins
The inter-residue average distance was calculated as the
distance between the Cα atoms of residues in a protein
whose 3D structure is known. We define a range as the

Table 1 The 160 completely ordered proteins collected from the PDB are shown

Range of number of residues in a protein

60-79 80-99 100-119 120-139 140-159 160-179 180-199 200-219

Number of 100% ordered proteins 20 20 20 20 20 20 20 20

Number of 100% disordered proteins 8 12 20 7 5 10 4 8

Number of partially disordered proteins 10 14 16 9 20 21 19 20

The 129 partially disordered and 74 completely disordered proteins collected from DisProt are also shown [6]. Each protein is assigned to one of 8 groups based
on the protein’s number of residues, with numbers ranging from 60 to 219 residues
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distance between two residues along the sequence of a
given protein. The range M = 1 is defined as 1 ≦ k ≦ 8,
where k = |i − j| for i-th and j-th residues along the
amino acid sequence. In the same way, the respective
ranges M = 2, 3, 4 were defined as 9 ≦ k ≦ 20, 21 ≦ k ≦
30, 31 ≦ k ≦40, and so on. The average value of the
inter-Cα-atom distances for a pair of residue types in
every range was calculated [19].

Construction of an ADM
As previously mentioned, the ADM for a protein is con-
structed using only the sequence information. A plot is
made on a map when the average distance of a pair of
residues within the range M is less than a certain thresh-
old, and a threshold is defined for every range. The set
of threshold values is determined in such a way as to re-
produce the whole plot density of the contact map con-
structed from the 3D structure of a protein (real
distance map, RDM) [19]. The values for the whole plot
density of RDMs follow the formula, ρav ¼ C

N , where ρav
is the plot density, N is the total number of residues for
a given protein, and C is an adjustable constant [19]. It
has been shown that C = 36.12 approximately reproduces
the whole plot density of the RDM for a protein with an
15-Å cutoff [19]. We use this value in the present study.
The threshold value of the average distances in the

range M to construct the ADM for a given protein is
determined so as to reproduce the value of ρav ¼ C

N : The
number of pairs of residues in a range M to be plotted
on an ADM obeys the following equation:

P Mð ÞC ¼ D
M

� �
P Mð Þ;

where P(M)C is the number of residue pairs to be plot-
ted, which should be the number of residue pairs with
an average distance less than the threshold in the range
M. P(M)t is the number of all residue pairs with statisti-
cally significant values for the average distances in the
range M [19]. D is a parameter to adjust the plot density
of the ADM closer to the value of ρav ¼ C

N :

Analysis of the ADM
A constructed ADM is analyzed by the following
procedure.

1. Calculation of the plot density differences Suppose
that an ADM is divided into two parts by a line parallel
to the y-axis at the i-th residue or by a line parallel to
the x-axis at the i-th residue as shown in Fig. 1 (a) and
(b). Then, let us define ρi and ~ρi as the plot density of
the triangular and trapezoidal parts, respectively. The
plot density difference is defined as Δρi ¼ ρi−~ρi.

The values of the plot density difference, Δρi, are cal-
culated from residues 1 to the total number of residues
in a given protein. The plots obtained by the line parallel
to the x-axis is called vertical scanning and those ob-
tained by the line parallel to the y-axis is called horizon-
tal scanning. v of Δρvi and h of Δρhi denote the vertical
and the horizontal divisions of a map, respectively. In
Fig. 1(c), the schematic drawing of the vertical and hori-
zontal scanning plots of ADM is presented.

2. Detecting the boundaries of a compact region The
existence of a peak and a valley in a scanning plot reflect
a sudden change in the plot density values on a map.
Figure 1(c) depicts a schematic example of the horizon-
tal scanning plot of Δρhi from 1 to N, and at the bottom
of the figure, a peak and a valley appear at c and d, re-
spectively, indicating a large change in plot density
values. In the same way, a peak and a valley appear at a
and b, respectively (shown the left of the figure), in the
vertical scanning plot of Δρvi . The boundary of a com-
pact region on a map can be detected as a highly dense
region of plots with a peak and a valley appearing in the
horizontal and vertical scanning plots of density
differences.

3. Predicting the location of a compact region The
positions of peaks in scanning plots can define a possible
compact region on an ADM. Figure 1(d) illustrates a
hypothetical ADM with two compact regions near the
diagonal. The horizontal and vertical scanning plots
show the peaks at residues m and n and residues p and
q, and these regions m-p and n-q on the map can be
predicted as possible compact regions in a given protein.
Furthermore, we use η ¼ Δρhm þ Δρvn as a measure of the
compactness of m-p [19].

Results
Properties of predicted ADM plots for completely
ordered, completely disordered, and partially disordered
proteins
Examples of ADMs for a completely ordered protein,
arsenate reductase from E. coli (PDB ID: 1S3D), and a
completely disordered protein, protein umuD from E.
coli (DisProt code: DP00626), from the DisProt database,
are shown in Fig. 2(a) and 2(b). As seen in Fig. 2, dis-
criminating between ordered and disordered proteins by
just glancing at the ADMs is difficult. Therefore, we
analyze the ADM-plot density of the data set proteins in
Table 1 in detail.
Figure 3 shows the average of long-range ADM-plot

density values for various sizes of completely ordered,
completely disordered, and partially disordered proteins.
ADM-plot density means the ratio of the number of
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plots on the ADM for a given protein to the total num-
ber of residues in this protein. We call this value
“ADM-plot ratio”. The term “long-range” means that
residue pairs that are separated by more than 8 residues
are counted in the ADM-plot ratio calculation. In Fig. 3,
one can see that the average values for completely or-
dered proteins tend to be the highest, those for partially
disordered proteins intermediate, and those for com-
pletely disordered proteins the lowest. The ADM-plot
ratio for long-range pairs can therefore be an indicator
for IDRs (intrinsically disordered regions).
Next, more detailed characteristics of the ADM-plot

ratio are examined. Figure 4(a) presents a histogram of
the number of completely disordered and completely or-
dered proteins versus the short-range ADM-plot ratio.
Here, “short-range” refers to a plot on the ADM formed
by a pair of residues separated by fewer than 9 residues
along a given sequence. This histogram indicates the

ratio (%) of the number of proteins to the total number
of proteins. The average value of the short-range
ADM-plot ratio for all the completely disordered pro-
teins is 3.50, and the value for all the completely ordered
proteins is 3.46. That is, there is no big difference in the
tendencies between completely ordered and completely
disordered proteins.
The same histogram for a long-range ADM-plot ratio

is presented in Fig. 4(b). Again, “long-range plot” refers
to a plot formed by a pair of residues separated by more
than 8 residues along a given sequence. The average
value of the long-range ADM plot ratios for all the com-
pletely disordered proteins is 4.18 and for all the com-
pletely ordered proteins is 7.15. Thus, there is a
difference in tendencies between completely ordered and
completely disordered proteins, namely, an ordered pro-
tein tends to show a high long-range ADM-plot ratio.
We suggest that the long-range ADM-plot ratio

Fig. 1 Schematic drawing of a map divided by a line parallel to the y-axis at the i-th residue (a) and divided by a line parallel to the x-axis at the
i-th residue (b). The density of plots in the trapezoidal part and the triangular parts are denoted by ρi and ~ρi , respectively. c Schematic drawing of
a map with some plots. A peak and a valley appear at the boundaries of a highly dense region of plots. This map predicts that many plots will
form between the segments a–b and c–d. d Hypothetical map with two compact areas near the diagonal along with the horizontal and vertical
scanning plots. This map predicts the existence of two domains at the regions p–q and m–n. We define η as a measure of the compactness of
the region, namely, Δρhp þ Δρvq or η ¼ Δρhm þ Δρvn
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Fig. 2 a ADM for an example of a completely ordered protein, arsenate reductase from E. coli (PDBID:1S3D). b ADM for an example of
completely disordered protein, protein umuD from E. coli (DisProt code: DP00626). A region enclosed by a red triangle denotes a region with
high η value, that is, a predicted compact region

Fig. 3 Plot of the average long-range ADM plot ratio values versus the window widths of 40 residues in proteins. A triangle, a rectangle, and a
diamond denote completely ordered, partially disordered, and completely disordered proteins, respectively. “ADM plots ratio” refers to the ratio of
the number of plots to the total number of residues in a given protein. Ted by more than 8 residues are counted in the ADM plot ratio calculation. An
error bar is presented at each point, denoting the standard error value
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discriminates between a disordered region and an or-
dered region. Figures 4(c) and (d) show figures analo-
gous to Figures 4(a) and (b) for ordered and disordered
regions in partially disordered proteins. For a partially
disordered protein, the same calculation of the
ADM-plot ratio is performed for both ordered and dis-
ordered region, and the values of the ADM-plot ratio
are presented in Figs. 4(a) and (b).
Figures 4(c) and (d) suggest a similar tendency, with

the long-range ADM-plot ratio presented in Fig. 4(b).
From Fig. 4(b), the average value of the long-range
ADM-plot ratio for all the disordered regions is 4.75
and for all the ordered regions is 7.33. In comparison,
the average value of the short-range ADM-plot ratio
for all the disordered regions is 3.00 and for all the or-
dered regions is 3.90 [Fig. 4(c)]. It is interesting that
Fig. 4(c) indicates a higher short-range ADM-plot
ratio in the ordered region. This tendency does not
appear for the short-range ADM-plot ratio in com-
pletely ordered and completely disordered proteins.

This result might suggest that discriminating between
a disordered region and an ordered region becomes
clearer when a partial segment is the focus. These
results suggest that the tendency of the long-range
ADM-plot ratio between completely ordered and com-
pletely disordered proteins is same as that for partially
disordered proteins. However, the tendency of the
short-range ADM-plot ratio observed in a completely
disordered protein and a completely ordered protein is
different from that in partially disordered proteins.
This suggests that the tendency of the shorter-range
ADM-plot ratio in long-range plots for completely dis-
ordered proteins and completely ordered proteins is
different from that for partially disordered proteins.
Therefore, in order to identify a disordered region in a
partially disordered protein sequence, the effect of the
relatively shorter-range ADM-plot ratio in long-range
plots should be incorporated efficiently.
To extract only relatively short-range effects, we took

ADM plots of pairs of residues separated by fewer than

Fig. 4 a Histogram of the number of completely disordered and completely ordered proteins versus short-range ADM plot ratio. “Short-range”
refers to a plot on an ADM formed by a pair of residues separated by fewer than 9 residues along a given sequence. This histogram indicates the
ratio (%) of the number of completely disordered or completely ordered proteins to the total number of proteins. b Histogram of the number of
completely disordered and completely ordered proteins versus the long-range ADM plot ratio. “Long-range” refers to a plot on an ADM formed
by a pair of residues separated by more than 8 residues along a given sequence. This histogram indicates the ratio (%) of the number of
completely disordered or completely ordered proteins to the total number of proteins. c Histogram of the number of disordered and ordered
regions of partially disordered proteins versus the short-range ADM plot ratio. d Histogram of the number of disordered and ordered regions of
partially disordered proteins versus the long-range ADM plot ratio
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30 residues along the sequence of the protein under
consideration.

The procedure for identifying a partially disordered
region
Next, we aimed to develop a technique for predicting
disordered regions in a protein sequence.

Determining the disorder probability of a residue
In total, 50 partially disordered proteins with around
100 to 199 residues were selected from DisProt
(Table 1 and Additional file 2: Table S2). Any protein
in which the disordered regions cover less than 10%
of the whole protein or the ordered regions cover less
than 10% of the whole protein is excluded from the
present study. The ADM plot number of each residue
in the ADM for each protein was calculated, and the
ADM plot numbers were smoothed by taking the
average of 5 residues forward and backward from a
selected residue. For 50 proteins, the statistics of the
ADM plot number of a given residue, in particular,
the statistics of whether a residue is included in an
ordered or disordered region, was collected. Figure 5
shows these statistics, where the x- and y-axes indi-
cate the ADM plot number of a residue and the
probability that the residue is included in a disor-
dered region as predicted from the statistics. We call
this probability the “disorder probability”. This profile
is smoothed by least squares fitting. The result is
shown in Fig. 5 as a red broken line.

Attempt to predict IDRs
In this section, we describe a technique for predicting
IDRs in a given protein based on long-range ADM plots,
using the values indicated by the red broken line in Fig. 5.

Determining the threshold of disorder probability to predict
IDRs
We use the following accuracy criteria to judge whether
a residue is included in an ordered region or disordered
region based on the disorder probability.

ACCp ¼ TP þ TN
TP þ TN þ FP þ FN

ACCw ¼ 1
2

TP
TP þ FN

þ TN
TN þ FP

� �
:

Here, TP refers to the number of residues in both pre-
dicted and actual disordered regions, that is, true posi-
tive. Similarly, FN, TN, and FP indicate the number of
residues in predicted ordered regions that are actually in
disordered regions, false negative (FN); the number of
residues in predicted ordered and actual ordered re-
gions, true negative (TN); and the number of residues in
predicted disordered regions that are actually in ordered
regions, false positive (FP). It should be noted that
ACCw indicates the accuracy of the prediction for par-
tially disordered and partially ordered regions for the
whole sequence, whereas ACCp emphasizes the accuracy
for the prediction of partially disordered regions. Next,
we attempted to predict the partially disordered regions

Fig. 5 Plot of the ADM plot number of one residue (x-axis) vs. the probability that a residue is included in a disordered (ordered) region, that is,
the disorder probability (y-axis). The profile is indicated by a blue line. The red broken line denotes the smoothed profile of the disorder
probability plot by least squares fitting
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for 10 newly selected partially disordered proteins from
IDEAL, a database of IDPs, and compared the predic-
tions and the actual locations of disordered regions.
Then, ACCw and ACCp were calculated (10 IDPs from
Homo sapiens were selected from each category of
Table1, with balanced contents of IDRs (Additional file 3:
Table S3). The results are presented in Fig. 6. A value of
0.53 for the disorder probability shows the highest
ACCp, 0.723, whereas a value of 0.62 for the disorder
probability shows the highest ACCw, 0.782. Thus, we
use 0.62 for the disorder probability as the threshold to
improve the accuracy of the prediction of partially disor-
dered regions.

Test of the present technique compared to other techniques
In this section, we examine whether our threshold works
for 6 test disordered proteins from IDEAL (Table 2),
using a data set consisting of 50 arbitrarily selected pro-
teins from DisProt (Table 1 and Additional file 1: Table
S1) with 100 to 199 residues. The 6 proteins presented
in Table 2 were chosen so as not to include the previous
10 proteins used to determine the threshold with the
same criteria.
The results for the predictions of the IDR positions

are presented in Fig. 7 and (Additional file 4: Figure S1).
The results obtained are compared with some tech-
niques attempted in CASP10 competition. The tech-
niques in CASP10 exhibit similar accuracy [12]. Among
them, we chose the following three techniques, that is,
Biomine [21], DISOPRED [22] and PrDOS [23]. These
three techniques achieved the highest accuracies in the
Matthews correlation coefficient (MCC) and are avail-
able on line. In Fig. 7, we show the results for just

IID00019 and IID00378, that is, the sequences and com-
parisons of the results of prediction techniques
(Biomine, PrDOS, DISOPRED, and the ADM technique
in the present study) with the IDEAL annotations of
Histone H2A.Z from Homo sapiens (IDEALID:
IID00019) and small ubiquitin-related modifier 1 from
Homo sapiens (IDEALID: IID00378). One interesting
point is that for histone H2A.Z from Homo sapiens
(IDEAL-ID: IID00019), the present technique predicts
the position of the very short IDR at the part of the par-
tial sequence “SRTTS”, corresponding to 4 residues,
“TTSH” at 41–44, which was predicted as disordered by
IDEAL. It is also interesting that PrDOS, DISOPRED,
and the present ADM technique make the same predic-
tion for the N-terminal IDR in small ubiquitin-related
modifier 1 from Homo sapiens (IDEAL-ID: IID00378).
Table 3 presents the results for ACCw and ACCp

obtained by the present ADM technique and the three
other techniques. ACCw and ACCp are 0.793 using
Biomine, 0.894 and 0.817 using PrDOS, and 0.902 and
0.795 using DISOPRED. The present technique with
ADM yields a ACCw and ACCp of 0.845 and 0.741,
respectively. That is, the present technique achieved a
prediction accuracy that is comparable with the top
three techniques in the CASP10 contest.

Application to a sequence showing the IDP property but
forming ordered structures when two sequences form a
dimer
It is quite interesting to see the results when the present
technique is applied to the protein p53, which shows the
IDP property as a monomer, but its dimer formed by
two p53 sequences exhibits ordered structures [24]. p53

Fig. 6 Relationship between disorder probability and ACC. A disorder probability of 0.53 shows the highest ACCp, 0.723, and a disorder
probability of 0.62 provides the highest ACCw, 0.782
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protein is described in the structure with PDB ID: 3SAK.
The dimer part of the p53 tetramerization domain is
shown in Fig. 8(a). The monomer of p53 exhibits one
α-helix strand and one β-strand.
The protein p53 is a tumor suppressor protein and the

most significant hub protein in the network of cell cycle
regulation proteins against genotoxic stress. That is, p53
is activated by genotoxic stress and works as a transcrip-
tion factor to promote the transcription of downstream
genes and induce cell cycle arrest and apoptosis. It is

known that the tetramerization of p53 is indispensable
for expression of the function [25].
Table 4 presents the results for p53 obtained by the

present ADM technique and the three other techniques
mentioned above.
We apply the techniques for the p53 sequence itself

and the sequence connecting two p53 sequences. The
property of the sequence connecting two p53 sequences
is not exactly same as that of the dimer. However, the
results for the sequence connecting two p53 sequences

Table 2 The 6 Proteins from IFDEAL used to test the present technique and for the comparison with the other 3 techniques

IID00378 small ubiquitin-related modifier 1 (Homo sapiens)

IID90012 histone H3K27 methylase (Paramecium bursaria Chlorella virus 1)

IID00019 histone H2A.Z (Homo sapiens)

IID00346 microtubule-associated proteins 1A/1B light chain 3B (Homo sapiens)

IID00272 histone H3-like centromeric protein A (Homo sapiens)

IID00186 baculoviral IAP repeat-containing protein 5 (Homo sapiens)

Fig. 7 The sequences and comparisons of the results of prediction techniques (Biomine, PrDOS, DISOPRED, and the ADM technique in the
present study) with the IDEAL annotations of Histone H2A.Z from Homo sapiens (IDEALID: IID00019) and small ubiquitin-related modifier 1 from
Homo sapiens (IDEALID: IID00378). A segment with a red double arrow means the position of IDR annotated in IDEAL. A blue double arrow
means a segment predicted as IDR by biomine, PrDOS, Disopred, or the ADM technique in the present study
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are expected to show some properties of ordered struc-
ture formation. In the calculations of ACC, we assume
that the p53 monomer exhibits complete disorder and
that the dimer exhibits complete order. The same se-
quence of 3SAK in PDB is used. 3SAK is a tetramer of
p53. According to DISOPRED, the major part of the se-
quence tends to be predicted as ordered for the mono-
mer and dimer sequences, and thus the accuracy for the
dimer tends to be high. The Biomine technique predicts
the opposite, that the full sequences of both the mono-
mer and dimer are disordered. Therefore, high ACC is
observed for the monomer, but for the dimer, ACC is
low. These results imply that DISOPRED and Biomine

predict whether a given residue in a protein is in a disor-
dered region or ordered region based on the properties
of the local residues around the amino acid considered.
In contrast, the present ADM technique and

PrDOS made predictions with high accuracy for both
the monomer and dimer, as shown in Table 4. The
present technique achieves slightly better accuracy.
Figure 8(b) presents the predicted ordered regions or
disordered regions of the p53 monomer and dimer
sequences and compares the predicted regions with
the actual regions (see above). Our ADM technique
shows an extension of the ordered region in the
C-terminus of the first p53 sequence in the dimer,
namely, 32–37 and 42 [enclosed by the red dotted
rectangles in Fig. 8(b)], while a slight extension in
the N-terminus of the second p53 sequence is
observed, that is, 49–51 in the result by PrDOS, as
shown in Fig. 8(b) (blue dotted rectangle). Research
suggests that the helix part of the p53 monomer
tends to form ordered structure during molecular
dynamics simulations [26]. In a system such as p53,

Table 3 Comparisons of the prediction accuracy of the present
ADM technique and the top 3 techniques in the CASP10
experiment

Biomine PrDOS DISOPRED ADM

ACCw 0.79 0.89 0.90 0.85

ACCp 0.79 0.82 0.80 0.74

Fig. 8 a Dimer part of p53 tetramerization domain. Monomer of p53 exhibits one α-helix and one β-strand. b The sequences and comparisons of
the results of prediction techniques for the monomer and the dimer. The positions of an α-helix and a β-strand are indicated by red and blue
letters in sequences p53 (monomer) and p53 (dimer). A segment with a red double arrow means the position of IDR. A blue double arrow means
a segment predicted as IDR by Biomine, PrDOS, DISOPRED, or the ADM technique in the present study. It is assumed that the monomer exhibits
the IDP property and the dimer exhibits ordered structures [24]. A red rectangle in the PrDOS and ADM predictions denotes the parts which
show the predicted ordered regions only in the dimer
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a sufficient hydrophobic core is not formed within a
monomer, and the p53 monomer behaves as an IDP;
but by forming a dimer, a definite hydrophobic core
is formed, and the p53 dimer exhibits ordered struc-
tures [27].
The results of the present technique reflect this,

because ADM includes the effect of long-range
inter-residue interactions along a sequence. The same ef-
fect is considered to be incorporated in PrDOS. There-
fore, the present ADM technique may be able to predict
the conformational change from disorder to order in-
duced by the polymerization of IDP sequences and vice
versa.

Discussion
In the present study, we introduced a new technique for
predicting IDRs by means of maps based on
inter-residue average distance statistics, average distance
maps (ADM). The accuracy of the present technique is
comparable to the techniques in the CASP10 contest
with relatively high achievement including PrDOS, DIS-
OPRED, and Biomine.
In the prediction for the p53 dimer, the accuracy of

the present technique is the highest compared to current
ways of making predictions. Our ADM technique is ex-
pected not only to predict IDRs but also the formation
of ordered structures by dimerization.
Our ADM technique may predict a core region of

IDPs forming definite 3D structures through interac-
tions, such as dimerization and so on. Furthermore, our
study may serve to predict a disordered region which
would become an ordered structure when binding to an-
other protein.

Conclusion
The present study demonstrates that a new technique
based on the average distance map (ADM) can provide a
prediction of intrinsically disordered regions in a protein
in good accuracy. This method can be applied to a pro-
tein which shows a disorder property as a monomer but
ordered character when its form a dimer. These results
suggest that the inter-residue average distance statistics
includes various properties of proteins.
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