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Abstract

Background: White Spot Syndrome Virus (WSSV) is an enveloped double-stranded DNA virus which causes
mortality of several species of shrimp, being considered one of the main pathogens that affects global shrimp
farming. This virus presents a complex genome of ~ 300 kb and viral isolates that present genomes with great
identity. Despite this conservation, some variable regions in the WSSV genome occur in coding regions, and these
putative proteins may have some relationship with viral adaptation and virulence mechanisms. Until now, the
functions of these proteins were little studied. In this work, sequences and putative proteins encoded by WSSV
variable regions were characterized in silico.

Results: The in silico approach enabled determining the variability of some sequences, as well as the identification
of some domains resembling the Formin homology 2, RNA recognition motif, Xeroderma pigmentosum group D
repair helicase, Hemagglutinin and Ankyrin motif. The information obtained from the sequences and the analysis of
secondary and tertiary structure models allow to infer that some of these proteins possibly have functions related
to protein modulation/degradation, intracellular transport, recombination and endosome fusion events.

Conclusions: The bioinformatics approaches were efficient in generating three-dimensional models and to identify
domains, thereby enabling to propose possible functions for the putative polypeptides produced by the ORFs
wsv129, wsv178, wsv249, wsv463a, wsv477, wsv479, wsv492, and wsv497.
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Background
White Spot Syndrome Virus (WSSV) is an enveloped
double-stranded DNA virus recognized for its great
impact on global shrimp farming and for the complexity
of its ~ 300 kb genome [1]. To date, little is known about
the function of most of the ~ 184 WSSV predicted
proteins since they have no homology with known
sequences in the repositories [2]. Although most of these
proteins present high identity among different WSSV
isolates, variations are present in WSSV genome coding re-
gions, including two genomic deletions occurring between

ORFs wsv461/wsv464 (14/15) and ORFs wsv77/wsv502
(23/24), and a variable number of tandem repeats (VNTRs)
occurring within wsv129 (ORF75), wsv178 (ORF94) and
wsv249 (ORF125) [3]. These variable regions have been
used as molecular markers to identify viral variants [4–7].
Some studies have already indicated that these variable
regions may have some relationship with the viral evolution
and infection phenotype [8, 9], however there are still no
direct correlations between the function of these putative
products and virulence, mainly due to the lack of infor-
mation about the functions of these proteins.
Computational tools have proven to be efficient for

functionally characterizing proteins at low cost in a
shorter time, thus enabling the analysis of some targets
which cannot be evaluated in vitro, such as membrane
proteins [10, 11] or proteins involved in viral infection
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mechanisms [12–15]. In this work, the putative proteins
encoded by variable regions in the WSSV genome were
structurally and functionally characterized using bio-
informatics tools, and possible functions for these pro-
teins were inferred.

Methods
Available nucleotide sequences corresponding to the va-
riable regions from WSSV different isolates were retrieved
from GenBank and subjected to a multiple alignment
through MAFFT [16], and some adjustments were made by
manual editing. Repeat units of each isolate were annotated
using Geneious version 11.0.3 [17] and aligned against a
reference sequence for annotation of polymorphism sites.
Polymorphism sites were visualized by WebLogo [18].
Remote homologies between protein sequences were

identified using BLAST tools (BLASTp, PSIBLAST and
PHIBLAST) against non-redundant databases [19, 20].
Searches based on Hidden Markov Model profiles were
also performed through JACKHMMER, hmmscan,
HHBlits and HHPred [21–23].
Protein sequences were submitted in an iterative

search to generate tertiary structure models using
HHBlits (2–4 iterations) against the Uniclust30 database
[24]. The best hits were selected from the generated
output and submitted on HHPred against the PDB70
database. HHPred’s best hits were used as templates to
generate the structural models. The tertiary structure
was modeled with PHYRE2, ITASSER, Swiss-Model
and Modeller [25–28]. All models were based on the
sequences of China 01 isolate (KT995472.1).
Secondary structures and threading predictions were

also generated using PSIPRED and pGenThreader, re-
spectively [29, 30]. The obtained models were evaluated
by Molprobity [31] evaluating the parameters clashscore,
hydrogen bonds, van der walls contacts, geometry, rota-
mers, Cβ deviations and cis-peptides. Ramachandran
plots were generated by pyRAMA 2.0 [32]. All images
from the models were generated by Chimera [33]. The
validation of the structural models was performed
through Verify3D which evaluates the compatibility of a

three-dimensional model based on the 3D-1D scores
that consists of the statistical preference of each of the
amino acid residues that make up the model.
Structures used as templates for protein modeling were

obtained from the Protein Data Bank (PDB): U1 small nu-
clear ribonucleoprotein (U1 snRNP, PDB: 4PKD), XPD re-
pair helicase of Thermoplasma acidophilum (PDB: 4A15),
Influenza hemagglutinin HA2 subunit (PDB: 1QU1),
Ankyrin Repeat (PDB: 4HDB), RNF4 RING (PDB: 4AP4),
Formin mDia1 Structure (PDB: 3OBV). Disordered
regions, coiled coils, transmembrane regions and sig-
nal peptides were predicted using Foldindex, Coils,
TMHMM and SignalP [34–36], respectively. SMART,
CDD, ScanProsite and Eukaryotic Linear Motif (ELM)
were used to detect conserved domains, patterns and
motifs [37–40].

Results
Only characterization results with highest confidence
levels based on the evaluation of the protein models are
presented in this section. The pipelines that presented
the best results for each model generated in this study
are summarized in Table 1. The validation of the models
was also performed using Verify3D. These results are
presented in the Additional file 1.

Characterization of some ORFs which occur in wsv461/
wsv464 and wsv477/wsv502 clusters
The alignment of sequences corresponding to wsv461/
wsv464 and wsv477/wsv502 clusters revealed insertions of
approximately 5Kb and 13Kb, respectively. The wsv461/
wsv464 cluster contains up to 6 ORFs (wsv461, wsv463a,
wsv463b, wsv463c, wsv463d, wsv464), as detailed in Fig. 1a
and Table 2. This cluster is truncated in most isolates,
lacking these 6 ORFs. The insertions of the WSSV-CN02
and WSSV-TW isolates have wsv461 and wsv463 linked
as a single coding region.
The number of putative coding regions in wsv477/

wsv502 cluster is higher comprising 13 ORFs, (wsv477,
wsv479, wsv482, wsv484, wsv486, wsv489, wsv490, wsv492,
wsv493, wsv495, wsv497, wsv500, wsv502), as detailed in

Table 1 Pipelines used to generate each of the models presented in this study. The numbers represent the sequence in which each
software was used

Model HHBLITS HHPRED Modeller Swiss-model Phyre2 ITASSER PSIPRED

wsv249 (ANK) 1 2 – 3 – – –

wsv249 (RING) 1 2 – 3 – – –

wsv463a 1 2 3 – – – –

wsv477 1 2 3 – – – –

wsv479 – – – 2 – – 1

wsv492 – 1 – 2 – – –

wsv497 – – – 2 – – 1
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Fig. 2a and Table 3. The characterization results of each
coding region for both clusters is presented below.

ORF wsv463a
The ORF wsv463a, a putative coding sequence located
in wsv461/wsv464 cluster (Fig. 1a), presented a proline
rich domain located in an unfolded portion of the pre-
dicted protein (positions 99–159) and a larger domain
similar to the Formin Homology 2 (FH2) between posi-
tions 170–508 (Fig. 1b). The 3D model of the larger
structured domain confirms the alpha-helical structure
of FH2, composed by five alpha-helical subdomains
(Lasso, Linker, Knob, Coiled Coil and Post) (Fig. 1c).
The validation tests, main scores and the ramachandran

plot corresponding to the 3D model are presented in
Additional file 2.

ORF wsv477
The ORF wsv477 is the first coding region in wsv477/
wsv502 cluster (Fig. 2a). The putative product of wsv477
presents a domain homologous to a RNA Recognition
Motif (RRM) in positions 70–139 (Fig. 2b), and a
“Zinc-Finger” domain in its C-terminal region. The 3D
model of the RRM domain revealed a tertiary structure
with two alpha-helices and three beta-sheets following
a β1α2β2β3α2 pattern, which corresponds to the typ-
ical RRM β1α2β2β3α2β4 structure (Fig. 2c and Add-
itional file 3). Aromatic residues involved in RNA

Fig. 1 Structural analysis of the putative protein encoded by ORF wsv463a (ORF14/15). a Schematic representation of wsv461/wsv464
cluster. b Schematic representation of the putative protein encoded by wsv463a, FH1 domain corresponding to the proline rich region
(orange) and Formin homology 2 domain are shown in yellow. The graph below the scheme indicates the folded (green) and unfolded
(red) regions predicted by FoldIndex, the x-axis indicates the amino acid positions and the y-axis represents the probability scores. c Three-dimensional
model of the wsv463a sequence corresponding to Formin Homology 2 domain. Conserved subdomains (Lasso, Linker, Knob, Coiled Coil and Post)
and amino acids of the typical FH2 domain are indicated
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binding remain conserved in the central strands of the
proposed protein, which are composed of Phe74 at
position 2 of the β1, Tyr118 at position 5 of β3 and
Phe116 position 3 of β3 (Fig. 2c).

ORFs wsv479 and wsv497
The ORFs wsv479 and wsv497 are also located in the
wsv477/wsv502 cluster (Fig. 2a). These ORFs produce
putative proteins that are similar in amino acid compo-
sition, size and folding, suggesting that they have similar
functions (Fig. 2d, e, f and g). It was not possible to infer

any function by sequence homology. By using threading
approaches it was possible to determine that the tertiary
structure of these two ORFs present similar folding to
Xeroderma pigmentosum group D repair helicase (XPD)
(Fig. 2e, g and Additional files 4 and 5). XPD belongs to
the helicase superfamily 2 and a component of transcrip-
tion factor IIH (TFIIH), which is associated with Nuclear
Excision Repair pathway (NER), catalyzing the opening
of the double helix around the damaged site, providing
access to NER factors in a ATP-dependent process [41].
The XPD helicase consists of two motor domains called
HD1 and HD2, an arch domain and an iron-sulfur

Table 2 Characterization of sequences corresponding to ORF wsv461/wsv464 (ORF14/15) cluster obtained from different WSSV
isolates

Accession
Number

Description
(Country)

Insertion lentgh
(bp)

Number of putative ORFs
(including wsv461 and wsv464)

Putative ORFs

AF440570.1 Taiwan 506 2 (wsv461 f, wsv464)

AF332093.3 China 257 3 (wsv461*, wsv463 f,wsv464)

AF369029.2 Thailand – 2 (wsv461, wsv464*)

JX515788.1 South Korea – 1 (wsv464)

KR083866.1 Egypt 257 3 (wsv461*, wsv463 f,wsv464)

KT995472.1 China 01 4999 6 (wsv461, wsv463a, wsv463b, wsv463c,
wsv463d,wsv464)

KT995470.1 China 02 506 2 (wsv461 f, wsv464)

KT995471.1 China 03 – 2 (wsv461*, wsv464*)

KY827813.1 China 04 – 2 (wsv461*, wsv464*)

MF784752.1 Brazil – 2 (wsv461, wsv464*)

KR083844.1 Egypt 09 4894 6 (wsv461, wsv463a, wsv463b,
wsv463c, wsv463d,wsv464)

KF771904.1 USA Texas 4894 6 (wsv461, wsv463a, wsv463b,
wsv463c, wsv463d,wsv464)

AY753327.1 Thailand 96 II 5025 7 (wsv461, wsv463a t, wsv463b,
wsv463c, wsv463d,wsv464)

KR083865.1 Egypt 14 137 2 (wsv461*, wsv464*)

KF771899.1 USA DC97 137 2 (wsv461*, wsv464*)

KR083846.1 EGYPT 11 1136 2 (wsv461*, wsv464*)

KF771902.1 USA Texas 2 1136 2 (wsv461*, wsv464*)

KX501221.1 Thailand 12 – 2 (wsv461*, wsv464*)

EU327501.1 India 05 – 2 (wsv461*, wsv464*)

MG702567.1 INDIA AP4RU – 2 (wsv461*, wsv464*)

HQ257380.1 Mexico Mx-F 335 2 (wsv461*, wsv464*)

HQ257382.1 Mexico Mx-C 335 2 (wsv461*, wsv464*)

HQ257383.1 Mexico Mx-G 335 2 (wsv461*, wsv464*)

MF768985.1 Australia 171 2 (wsv461*, wsv464*)

KX501220.1 Thailand TH-14 – 2 (wsv461*, wsv464*)

KU746817.1 China FCG2–14 – 2 (wsv461*, wsv464*)

EF468499.1 India IN-07 335 2 (wsv461*, wsv464*)

*Partial sequences
f Fusion of two sequences
t Two ORFS formed in wsv463a (occurs exclusively on WSSV TH-96-II)
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Fig. 2 Structural analysis of the proteins encoded by wsv477/wsv502 cluster. a Schematic representation of wsv477/wsv502 cluster. b, d, f, h
Schematic representation of putative proteins encoded by ORFs wsv477, wsv479, wsv497 and wsv492, respectively. Zinc-finger domain of the
product encoded by ORFwsv477 is shown in orange and the other major domains of each protein are highlighted in yellow in each respective
scheme. Graphs below each scheme indicate the folded (green) and unfolded (red) regions predicted by FoldIndex. In each graph, the x-axis
indicates the amino acid positions and the y-axis represents the probability scores. c, e, g, i Three-dimensional models of the major domains
identified in each predicted protein. The main conserved amino acids are presented in the RRM model (c) and the homotrimeric helices are
highlighted in different colors in HA2 (I)
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cluster (FeS) superimposed on HD1. The process of
binding XPD to DNA is through the HDR2 domain [42].

ORF wsv492
The wsv492 putative product demonstrated high simi-
larity with the HA2 subunit of the hemagglutinin in-
fluenza virus (Fig. 2h, i). The 3D model shows a HA2-like
subunit formed by a triple-helical chain (Fig. 2i and
Additional file 6).

Characterization of ORFs comprising VNTRs
The alignment of sequence sets for ORFs wsv129,
wsv178 and wsv249 revealed that high and less variable
regions are wsv129 and wsv249 respectively, considering
the VNTR size and the total number of analyzed se-
quences (Table 4). It has been observed that repeat units
(RUs) contain few polymorphic sites in all cases. Substi-
tutions in wsv178 were observed occurring in positions
1, 36 and 48. Wsv249 has substitutions in positions 2,
9, 12, 27, 50, 53 and 61, with the last three occurring
at a higher frequency. Wsv129 has two types of repeat
units, the most frequent having 45 bp and a 57 bp

repeat intercalating the 45 bp RUs. Indels occur more
frequently in wsv178 and wsv249.

ORF wsv129
Secondary structure predictions revealed small trans-
membrane helices in the N-terminal region (positions
50–72) which coincide with a structured region of the
wsv129 predicted protein (Fig. 3a). Curiously, several
coiled coils coded by the 57 bp repeat units and nuclear
localization signals (NLS) are predicted at the end of
each repeat in VNTR region (Fig. 3a).

ORF wsv178
Small transmembrane helices were also predicted in the
N-terminal region of wsv178 putative product (positions
7–29) coinciding with the unique folded region of the
protein (Fig. 3b). Curiously, a cleavage site was predicted
between residues 26 and 27 which could separate the
product encoded by the VNTR region from the trans-
membrane portion. The presence of putative nuclear
localization signals was also observed at the beginning of
each repeat unit.

Table 3 Characterization of sequences corresponding to ORF wsv477/wsv502 (ORF23/24) cluster, obtained from different WSSV
isolates

Accession
Number

Description|
(Country)

Insertion
lentgh (bp)

Number of putative ORFs (including
wsv477 and wsv502)

Putative ORFs

AF440570.1 Taiwan 12,613 13 (wsv477, wsv479, wsv482, wsv484, wsv486, wsv489,
wsv490, wsv492, wsv493, wsv495, wsv497, wsv500, wsv502)

AF332093.3 China 11,451 13 (wsv477, wsv479, wsv482, wsv484, wsv486, wsv489,
wsv490, wsv492, wsv493, wsv495a, wsv497, wsv500, wsv502)

AF369029.2 Thailand 81 2 (wsv477, wsv502)

JX515788.1 South Korea 6959 8 (wsv477, wsv479, wsv482, wsv484, wsv486, wsv500, wsv502)

KR083866.1 Egypt 11,451 13 (wsv477, wsv479, wsv482, wsv484, wsv486, wsv489,
wsv490, wsv492, wsv493, wsv495a, wsv497, wsv500, wsv502)

KT995472.1 China 01 12,536 13 (wsv477, wsv479, wsv482, wsv484, wsv486, wsv489,
wsv490, wsv492, wsv493, wsv495a, wsv497, wsv500, wsv502)

KT995470.1 China 02 6718 8 (wsv477, wsv479, wsv482, wsv484, wsv486, wsv500, wsv502)

KT995471.1 China 03 1643 4 (wsv477, wsv479a, wsv500, wsv502)

KU216744.1 Mexico 98 2 (wsv477, wsv502)

KY827813.1 China 04 1643 4 (wsv477, wsv479a, wsv500, wsv502)

MG264599.1 Brazil 12,090 13 (wsv477, wsv479, wsv482, wsv484, wsv486, wsv489,
wsv490, wsv492, wsv493, wsv495, wsv497, wsv500, wsv502)

aPartial sequences

Table 4 Repeat units in WSSV VNTRs

VNTRs RU length
(bp)

Number of aligned
sequences

Number of different
sizes

Minimum number
of RUs

Maximum number
of RUs

Most frequent
RU

wsv129 (ORF75.a) 45 39 13 2 21 11

wsv 129 (ORF75.b) 57 39 5 1 5 3, 4

wsv178 (ORF94) 54 43 12 1 18 6

wsv249 (ORF125) 69 34 5 2 7 4
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Fig. 3 Structural analysis of the proteins encoded by ORFs containing variable number of tandem repeats. a, b, c Schematic representation of
putative proteins encoded by wsv129 (ORF75), wsv178 (ORF94) and wsv249 (ORF125). VNTR regions are presented in yellow, the numbers
correspond to repeat units (RUs). Transmembrane regions (TM) and the Ring Finger domain (RING) are highlighted in blue in each respective
scheme. The nuclear localization signal of each RU is shown in red. The graphs below each scheme indicate the folded (green) and unfolded
(red) regions predicted by FoldIndex. In each graph,ic the x-axis indicates the amino acid positions and the y-axis represents the probability
scores. d, e Three-dimensional models of wsv249 regions corresponding to Ankyrin (d) and RING domains (e). Conserved subdomains and
amino-acids are presented in each 3D-model
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ORF wsv249
The product generated by wsv249 has a more structured
chain compared to the other ORFs that contain VNTR re-
gions (Fig. 3c). The characterization by remote homology
and fold recognition revealed that the first 300 residues of
the N-terminal region correspond to a Ankyrin repeat
(ANK) motif (Fig. 3d and Additional file 7). It was also
possible to identify a RING-H2 domain immediately after
the ANK domain region. The 3D model of the RING-H2
domain is shown in Fig. 3e, as well as the main conserved
amino acids. The validation tests of this three-dimensional
model are presented in Additional file 8.
Some glycine residues (89, 171, 231) located in the

second beta sheet as well as leucine residues located in
second alpha-helix (105, 106, 109, 110, 148, 199, 247,
248, 250, 282) of ANK motif remain in conserved posi-
tions in the proposed model. The typical tetrapeptide
TPLH was not observed in sequence due to divergence
at the primary structure level.
SMART data revealed that the tandem repeat units in

wsv249, despite the high E-value (due to the small se-
quence length), corresponding to ubiquitin-interacting
motifs (UIM) which consist of 20 residues alpha-helix of a
X-Ac-Ac-Ac-Ac-Φ-X-X-Ala-X-X-X-Ser-X-X-Ac-X-X-X-X
consensus, where “Φ” corresponds to a hydrophobic
residue, “Ac” is acidic residues and “X” can be any amino
acid residue [43, 44]. Additionally, a RING-H2 was detected
immediately next to the Ankyrin domain located between
positions 310–357 of the protein (Fig. 3c, e), which has the
Cys-X2-Cys-X(9–39)-Cys-X(1–3)-His-X(2–3)-His-X2-Cys-X
(4–48)-Cys-X2-Cys pattern, where “X” comprises any
amino acid.

Discussion
wsv461/wsv464 and wsv477/wsv502 clusters
The number of sequences with the truncated insertion is
smaller in wsv477/wsv502 cluster when compared to the
wsv461/wsv464. This observation is in accordance with
previous results which demonstrate that some proteins
encoded by wsv477/wsv502 cluster possibly have func-
tional domains [45, 46].

ORF wsv 463
The protein encoded by ORFwsv463 presents formin
characteristics. Formins consists of a family of proteins
that regulates the elongation of unbranched actin fila-
ments which are important in many cellular processes,
including formation of actin cables, cytokinetic ring, filo-
podia and stress fibers [47, 48]. These processes are
mediated by the FH2 domain located in the C-terminal
region, which forms a stable hydrophobic ring-like hemi-
dimer and binds the ends of actin filaments protecting
from capping proteins [49, 50]. Each hemidimer has
conserved residues that are directly related to actin

binding consisting of an Ile located in the subdomain
knob and Lys located in the lasso/post interface. Muta-
tions within these conserved sites may compromise actin
nucleation activity [51]. The glycine residues at positions
359 and 370 act on dimerization, as well as Ile245 and
Lys381 acting in actin-binding remain conserved in the
wsv463a predicted protein (Fig. 1c).
Formins also have a FH1 domain composed of polypro-

line, similar to what was observed in the wsv463a protein
scheme (Fig. 1b). The FH1 domain is directly related to
the interaction with profilin proteins during the actin
elongation. The actin monomer binding protein profilin
stimulates the actin assembly through binding FH1 and
FH2 domains, increasing elongation speed [51, 52].
As an essential component of cellular cytoskeleton, actin

can be manipulated by viruses into the host cells in many
stages of its life-cycle, including entry, motility, nuclear
and assembly [53], modulating the activity of actin binding
proteins. Actin filaments provide mechanical force for
viral pathogens to navigate within the host cell, causing
changes in cellular shape [54]. HIV is able to navigate
between dendritic cells through filopodia produced by
formins [54]. Formin FHOD1 together with the small
GTPase Rac1 of Vaccinia virus is associated with actin
tail formation, acting in an integrated way with the
N-WASP-ARP2/3 pathway, thus being essential for
Vaccinia virus motility and dissemination [55]. The fact
that WSSV encodes formins may be related to regula-
tion of host fibrous proteins involved in viral packaging
and/or intracellular transport.

ORF wsv 477
ORF wsv477 was previously characterized as a 624 bp
immediate early gene encoding putative protein of the
208 amino acid, with an ATP/GTP binding site between
positions 7–14 and a Cys2/Cys2 type Zinc-finger domain
between residues 169–197 [56]. In addition, a miR-7
injection in WSSV infected shrimp could reduce the
wsv477 expression and decrease the number of WSSV
genome copies at 12 to 96 h post infection [57, 58]. The
results presented herein corroborate that the RRM
domain in wsv477 protein may be related to post tran-
scriptional steps (splicing, pre-mRNA processing, RNA
editing, translation regulation) which determine the
efficiency of viral replication.
RRM can be found in all organisms, being found with

greater abundance in proteins encoded by eukaryotes in
multiple copies or in conjunction with other domains
like “Zinc-Finger” domains of the CCCH or CCHC
types, which can bind to RNA. This domain is in-
volved in post-transcriptional events including spli-
cing, pre-mRNA processing, RNA editing, translation
regulation, and RNA degradation [59–63]. Some RRM
proteins are involved in replicating RNA viruses, including
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heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1)
in Hepatitis C virus which interact with an RNA-
dependent RNA-polymerase and septin 6, forming a repli-
cation complex [64]. The interface between RNA and
RRM occurs through four conserved residues located in
the central β1 and β3 (called RNP2 and RNP1, respec-
tively) of the RRM, where nitrogenous bases of the RNA
bind to the side chain of the localized aromatic amino
acids in the β1 (position 2 of RNP2) and in β3 (position 5
of RNP1). The third aromatic residue at position β3
(position 3 of RNP1) hydrophobically interacts with the
two pentose rings of each nucleotide [65, 61].

ORFs wsv479 and wsv497
It has been previously described that wsv479 and wsv497
sequences have a conserved VP9 domain (also known as
ICP11) located in the N-terminal region [66] having a fer-
redoxin fold which has been suggested as a DNA recogni-
tion domain. Considering this and the presented results,
these proteins probably have functions related to WSSV
genome processing and recombination events.

ORF wsv492
The wsv492 putative protein probably has functions
related to hemagglutinin. Hemagglutinins consist of gly-
coproteins which remain anchored in the viral envelope
and mediates viral entry [67]. After protein synthesis,
the sequence encoding hemagglutinin (HA0) undergoes
a post-translational cleavage, producing the HA1 and
HA2 subunits which form a homotrimeric structure.
The HA1 subunit interacts with sialic acid, a monosac-
charide present on the membrane surface mediating the
endocytosis of the viral particle [68]. The HA2 subunit
consists of a triple-helical hydrophobic structure associ-
ated with the pH-induced fusion process, a mechanism
by which the virus releases from the endosome and con-
tacts the host cell cytosol.

ORFs comprising VNTRs
The RU profiles observed in VNTRs of ORFs wsv129,
wsv178 and wsv249 coincide with those already pre-
viously described [69, 70]. Interestingly, the reading
windows are maintained in even more variable VNTRs.
It was not possible to obtain reliable three-dimensional
models for the wsv129 and wsv178 putative products,
since they have a large unstructured portion, as well as
many charged amino acids.

ORF wsv129
The prediction of a large unstructured portion rich in
coiled coils in association with the transmembrane do-
main in the wsv129 polypeptide indicates a structural
function. In fact, 18 structural proteins located in the
WSSV virion, including the protein encoded by wsv129,

were previously detected by proteomic analysis [71]. In
this same work, a temporal analysis showed that the
wsv129 product is expressed late, at least 6 h after the
WSSV infection.
NLS act by directing proteins into the cell nucleus and

can be subdivided into two subclasses: monopartite,
formed by a group consisting of a sequence K (K/R) X
(K/R), or bipartite, which are formed by two groups of
basic residues separated by a 10–12 amino acid linker
which may vary [72]. The transport of macromolecules
through the nucleus occurs through a nucleoporin pro-
tein complex called the nuclear pore complex (NPC).
Proteins above 40 kDa require a specific signal which
will allow it to interact with carrier proteins that will fa-
cilitate its entry into the nucleus [73–75].
The binding of the carrier protein of the NLS is

important for the release of the viral molecules into the
nucleus. DNA viruses that infect animals replicate in the
nucleus of the host cell. To drive the entry of the viral
genome into the nucleus, large viruses normally release
their DNA associated with structural proteins which are
associated with nuclear localization signals [76].
Viral proteins containing NLS signals in tandem were

not found in the literature. Since the mechanism of
WSSV entry into the host cell nucleus is unknown, this
may be an indication of a new type of entry mechanism
which needs to be better investigated. On the other
hand, it is not possible to rule out the possibility that
these NLS signals are artifacts of the software analysis.

ORF wsv178
The structural data presented herein indicates that
wsv129 and wsv178 are related to similar functions, as
previously suggested [77]. These proteins may also have
some adaptive function, considering that these two
VNTR are the most variable, even among isolates from
the same region.

ORF wsv249
Ankyrin repeat (ANK) is a motif composed of about 33
amino acid residues which are important in the modula-
tion of several cell pathways mediating specific protein-
protein interactions; most of the protein sequences that
exhibit these motifs usually consist of transcriptional
regulators, modulators of cellular development and
differentiation [78]. The ANK motif adopts a helix-loop-
helix structure in which two alpha-helices are arranged in
an anti-parallel fashion and the loop protrudes out of the
frame to facilitate the formation of hairpin-like beta-sheet
with neighboring loops. The conserved tetrapeptide
T-P-L-H (6–9) forms a closed curve starting at the first
alpha-helix of the ANK [79]. Hydrogen bonds between
the threonine hydroxyl groups and the histidine imidazolic
ring contribute to ANK stability. The Val/Ile-Val-XXX
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(hypophilic)-Leu/Val-Leu-Leu motif (positions 17–22) lo-
cated in second alpha-helix stabilize the overall framework
of an ANK protein. Glycine residues are stored at position
4 located in the second beta sheet, and at 13 and 25 at the
alpha-helix ending [80].
ANK is a motif found in abundance in eukaryotic spe-

cies, but little is known about the presence of ANK
motif in viral proteins, except for species of the poxvirus
genus that present ANK motifs in the terminal regions
of the proteins involved in the ubiquitination process
[81, 82]. A PSI-BLAST of the ANK domain was per-
formed against poxvirus sequences, and it was possible
to observe hits for the ANK motif, despite the low
coverage presented.
The ORF wsv249 product was previously characterized

as a ubiquitin ligase, acting as a key element in the
modulation of protein abundance within cells through
the ubiquitin-dependent proteolysis mechanism [83, 84].
The activity of ubiquitin-ligase is governed by the
RING-H2 domain. The presence of ANK in conjunction
with RING-H2 reinforces the function of wsv249 in the
modulation of WSSV host proteins.

Conclusion
The alignment of variable sequences revealed that the
most and least variable regions are wsv129 and wsv 249
respectively, and that most of the already sequenced iso-
lates did not present insertion in the wsv461/wsv464
cluster. The different approaches used were efficient in
generating three-dimensional models and identifying
domains, which enabled proposing functions for the pu-
tative polypeptides produced by the ORFs wsv249,
wsv463a, wsv477, wsv479, wsv492, wsv497. The results
indicate that these proteins are possibly involved in
mechanisms related to protein modulation/degradation,
intracellular transport, endosome recombination and
fusion events. In addition, through the analysis of the
secondary structure and characterization of the VNTR
regions, it was possible to suggest that the products
encoded by the ORFs wsv129 and wsv178 have struc-
tural function and may be involved in the WSSV adap-
tive mechanisms.
Considering that ORFs wsv463a, wsv479, wsv492 and

wsv497 occur in a small number of WSSV isolates, their
functions are not essential for the WSSV infection, or
are being supplied by the cellular metabolism of the
host. On the other hand, considering that wsv129,
wsv178, wsv249 and wssv477 occur in all WSSV isolates
and that sequence variations do not compromise the
protein frame, their functions related to structural/pack-
aging (wsv129, wsv178, wssv477) or in ubiquitination
processes (wsv249) are possibly essential for viral repli-
cation and maintenance, and can be adaptive.
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